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ABSTRACT 
This paper presents a dynamic neural filter for adaptive 
noise cancellation. The cancellation task is transformed to 
a system-identification problem, which is tackled by use 
of the Block-Diagonal Recurrent Neural Network. The 
filter is applied to a benchmark noise cancellation 
problem, where a comparative analysis with a series of 
other dynamic models is conducted, underlining the 
effectiveness of the proposed filter and its superior 
performance over its competing rivals. 
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1.  Introduction 
 
Extraction of an information signal buried in noise is one 
of the benchmark problems in the area of signal 
processing [1]. The issue of noise cancellation is 
encountered in many cases, including interference in 
electrocardiographs and periodic interference in speech 
signals. The most common method of signal estimation is 
to pass the noisy signal through a filter, which tends to 
suppress the noise while leaving the signal relatively 
unchanged. The filters applied to this problem are fixed or 
adaptive. The design of the former is based on prior 
knowledge of both the signal and the noise. Adaptive 
filters, on the other hand, have the ability to adjust their 
parameters automatically, requiring little or no prior 
knowledge of the signal or noise characteristics. 
The problem of adaptive noise cancellation has been 
widely studied during the last decades and there exists a 
variety of filters in literature. Recently, neural networks 
have been employed to this area, exhibiting promising 
results [2]-[3]. In all cases, however, the suggested 
structures are static and the series-parallel identification 
approach is followed. Therefore, these models provide 
insufficient signal estimations when noise passes through 
nonlinear dynamic channels. 
In an attempt to alleviate this problem, a number of 
recurrent neural and fuzzy-neural models have been 
suggested as dynamic adaptive noise cancellers [4]-[6]. 

These models are capable of effectively model the 
dynamics of a channel and exhibit superior cancellation 
performance compared to the aforementioned static 
neural models. 
In this work an alternative recurrent structure is proposed 
as a noise cancellation filter. The filter is implemented by 
the Block-Diagonal Recurrent Neural Network [7], which 
has been proved in [8] to be an efficient identification 
tool. 
The rest of paper is organized as follows: In Section 2 the 
transformation of the noise cancellation problem to a 
system identification problem is given. In the next section 
the proposed model is briefly described. Finally, Section 
4 hosts the simulation results, where a comparative 
analysis with other recurrent neural and fuzzy models is 
conducted. 

 
 

2.  Transformation of the noise cancellation 
problem to a system identification problem 
 
According to [1], a typical structure of a noise 
cancellation system is shown in Fig. 1 where additive 
noise, , corrupts the information signal, s , 
resulting in the noise signal, d . The noise and 
information signals are assumed to be uncorrelated. The 
principle of noise cancellation is based on the assumption 
that both the noisy signal , and a filtered or distorted 
measurement of the noise, named reference noise x , 
are available. Noise x  is considered to pass through a 
channel with a transfer function T . Under the 
assumption that the inverse of the filter noise distortion 
can be estimated, the noise corrupting the signal can be 
identified and cancelled. In this perspective, the problem 
of noise cancellation can be transformed to a system 
identification problem [4] as follows: 
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Fig. 1. The problem of adaptive noise cancellation 

3.  The proposed network and the modeling 
method 
 
As shown in the previous section, the noise cancellation 
problem can be handled as a system identification 
problem. In this perspective, the model employed to 
perform system identification is the Block-Diagonal 
Recurrent Neural Network (BDRNN) [7]. The Block-
Diagonal Recurrent Neural Network is a two-layer 
network, with the output layer being static and the hidden 
layer being dynamic. The hidden layer consists of pairs of 
neurons (blocks); there are feedback connections between 
the neurons of each pair, introducing dynamics to the 
network.  
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Fig. 2. Adaptive noise cancellation as a system 
identification problem 

The operation of the BDRNN with m inputs, r outputs 
and N neurons at the hidden layer is described by the 
following set of state equations: 
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(( ) ( )bk f C k= ⋅y x         (5b) 
where: 
• ,  are the neuron activation functions of the 
hidden and the output layers, respectively. In the 
following, the activation functions are both chosen to be 

the sigmoid function 
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Let  denote the transfer function of the system. It is 
derived from Fig. 2: 

(.)F

• [ ]( ) ( )ik u k=u  is a m–element vector, comprising the 
inputs of the network at time k. 

))((ˆ)())(()(ˆ 1 kxTknkxFky −===     (1) 
and 

• [ ]( ) ( )ik x k=x  is a N–element vector, comprising the 
outputs of the hidden layer. In particular, ( )ix k  is the 
output of the i-th hidden neuron at time k. 

)()(ˆ)()()(ˆ)()( kskyknkskykdke →−+=−=  (2) 
Let ,  be considered as the desired input and 
output, respectively, of the system . According to (1) 
and (2), the error  will correspond to the information 
signal, which can be regarded as noise, additive to the 
output of the system , as shown in Fig. 2. 
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• [ ]( ) ( )ik y k=y  is a r–element vector, comprising the 
outputs of the network at time k. 
• ,i jB b =    and ,l jC c =    are  and  input 

and output weight matrices, respectively. 
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It is derived from (2): 
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(3) • ,i jW w =    is the  block diagonal feedback 

matrix. In particular,  

N N×

The information signal is statistically uncorrelated to the 
noise  and its estimate y . Therefore the last two 
ter zero and (3  becomes 
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Applying an optimization method, the parameters of the 
adaptive filter should be adjusted such that an error 
measure is minimized. Since the power of the information 
signal remains unchanged, minimizing th  error measure 
leads to minimization of 

e
)({ }2)(ˆ)( kyknE −  and, according 

to (4), to minimization of the quantity ( ){ }2)()( kske −E . 
Thus, minimization of the total output power of the 
adaptive model leads to the optimal mean squared 
estimate of the information signal. 

The feedback matrix, W, is block diagonal: 
( )(1) 2,...,
N

W diag W W =   
; each diagonal element, 

corresponding to a block of recurrent neurons, has a block 
submatrix in the form 
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Equation (6) describes a special case of BDRNN, which 
has scaled orthogonal sub-matrices. As shown in the 
literature, this network exhibits superior modelling 
capabilities over other forms of BDRNN.  
In view of the above, the state equations (5) for the 
Scaled Orthogonal BDRNN can take the following form: 
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where ,  are the feedback weights at the hidden 

layer. 

(1)
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The BDRNN is trained by the RENNCOM algorithm. 
The algorithm, entitled Recurrent Neural Network 
Constrained Optimization Method is fully described in [8] 
and a brief description is given in the sequel. 
The training method aims at transforming the learning 
process to a constrained optimization problem, which has 
been solved using methods based on optimal control 
theory and the calculus of variations. For the case of a -
input- -output BDRNN with scaled orthogonal feedback 
submatrices, the objective of the learning process is to 
adjust the network parameters so that a prescribed 
input/output mapping is captured. Learning is carried out 
in a parallel mode using a data batch 

m
r

( ){ }ˆ( ( ) , 1,...,), fk k k k=u y  comprising fk  input-output 

pairs. Two vectors are introduced: 
a) the state vector ( )st t , defined as: 

[ 1 1( ) ( ),..., ( ), ( ),..., ( ) T
N rk x k x k y k y k=st ]   (8) 

comprising the outputs of the hidden and the output layer.  
b) the control vector  comprising the synaptic and 
feedback weights  

θ
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For a data set including fk  pairs, the state equations (7) 

are written 
( ) , 1,..., f(k), (k) k k= =f st θ 0      (10) 
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The suggested algorithm is an iterative procedure which 
aims at achieving two objectives, simultaneously:  
• It is desired that an error measure function, E, should 
be minimized, in order to perform the input-output 
mapping, successfully. The Mean Squared Error (MSE) is 
selected here and is defined by 
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where  is the l-th model output, y k  is the l-th 
desired (actual) output of the system at time step k. 

( )ly k ˆ ( )l

• Secondly, a nonlinear multivariable function , 
called the pay-off function, should be optimized. In the 
present case the main scope is to facilitate and accelerate 
the learning process. The following pay-off function is 
selected: 

Φ

( ) (T
cur cur prevΦ = − −θ θ θ θ )

dθ

      (13) 

where ,  are the control vectors at the current 

and the previous epochs, respectively. Maximization of 
the pay-off function at each epoch implies that the current 
and previous weight updates are highly aligned, thus 
avoiding zig-zag trajectories and improving the 
convergence speed . 

curθ prevθ

Optimization of (12) and (13) is iteratively performed 
with respect to the decision variables, θ  and the state 
variables, , under the architectural constraints imposed 
by the state equations (11). In that sense, the learning 
process can be regarded as a constrained optimization 
problem. 

st

Following the procedure dictated in [8], the weights are 
updated as follows, with t being the epoch index: 

( 1) ( )t t+ = +θ θ          (14) 
The corrective vector  is given by: dθ
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where the following factors are calculated: 
2

EE E EI Τ= ∆Λ Λ
2

EI Τ
Φ Φ= ∆Λ Λ

 (16a)   (16b)   

(16c)  

2I Τ
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and ξ  is a constant over [0,1]. 
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The intermediate variables 
TΦ

Φ
∂ =  ∂ θ

Λ  and 
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f
θ

Λ λ  are calculated by use of the Lagrange 

multipliers, which are given by: 

0TE∂ ∂
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Matrix  is the 

Maximum Parameter Changes matrix (MPC). At each 
epoch the weights are changed by small amounts d , so 
that the positive quadratic equation holds:  
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where is the MPC for i∆ iθ . Equation (18) describes a 

hyper-ellipsoid centered at the point defined by the 
current control vector, whose axes are the i∆ ’s. Since the 

search space is defined in terms of , the MPC’s play an 
essential role in the learning process and is desired to be 
adaptable throughout the learning process. The adaptation 
mechanism is fully described in [8]. 

i∆

Summarizing, at each epoch t  the RENNCOM 
algorithm proceeds as follows: First, the current values of 

’s are derived according to the suggested adaptation 
schedule. Next, parameter learning is performed, by 
calculating the optimal parameter changes. If the resulting 
error measure is smaller than a prescribed threshold, 
learning is completed, otherwise the whole process is 
repeated. 

=1 2, ,....

i∆

 
 
4.  Simulation Results 
 
In this section the proposed filter is applied to a noise 
cancellation problem, where the noise n  passes 
through a nonlinear dynamic channel, producing the 
reference noise x(k). The passage’s dynamics is simulated 
by a second order nonlinear auto-regressive model with 
exogenous inputs (NARX) [4]: 

)(k

2
( ) 0.25 ( 1) 0.1 ( 2) 0.5 ( 1) 0.1 ( 2)

0.2 ( 3) 0.1 ( 2) 0.08 ( 2) ( 1)
x k x k x k n k n k

n k n k n k x k
= − + − + − + −
− − + − + − −  (19) 

The information signal s  is a saw-tooth signal of unit 
magnitude, 50 samples period, as shown in Fig. 3a. The 
signal  is corrupted by a uniformly distributed white 
noise sequence varying in the range [  shown in Fig. 
3b while the noise-corrupted signal d  is depicted in 
Fig. 3c. The training data sets consist of 12000 pairs 

, while the testing set comprises 1000 data 
pairs. 
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The BDRNN comprises eights blocks of neurons in the 
hidden layer. Training lasts for 1000 epochs. The learning 

parameters of the RENNCOM algorithm are shown in 
Table 1. 
A time section of eight periods of the recovered signal is 
presented in Fig.3d. It is evident that even though the 
information signal has half the amplitude of the additive 
noise, the former is accurately identified, with the 
exception of a few high frequency components. 
 

Table 1 
The learning parameters of the RENNCOM method 

na  n+  n−  0∆  ξ  

2 1.05 0.95 1E-2 0.9 
 
In the sequel, a comparative analysis is attempted 
between the suggested BDRNN filter and a class of noise 
cancellation filters including finite impulse response 
(FIR) and infinite impulse response (IIR) neural networks 
and a fuzzy inference system: 
• A Dynamic Fuzzy Neural Network (DFNN), taken 
from [6]. 
• A recurrent three-layer neural network (FIRN), in the 
form of 1- H -1, having a linear input layer, and FIR 
synapses at the hidden and output layers, as described in 
[6]. The outputs of the hidden and output layers are given 
by the following formulas: 
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• A recurrent three-layer neural network (IIRN), in the 
form of 1- H -1, having a linear input layer, and Frasconi-
Gori-Soda [9] neurons in the hidden and output layers. 
The outputs of these neurons are determined by the 
following formulas: 














+−+−= ∑∑

==

3

1

12

0

11
1

)()(tanh)( i

Oy

j
iij

O

q
iqi wjkOwqkuwkO

u

 

Hi ,...,1=           (21a) 














+−+−= ∑∑∑

== =

6

1

5

1 0

14
23

)()(tanh)( wjkywqkOwky
Oy

j
j

H

j

Oy

q
jjq  

            (21b) 
For each of the above-mentioned models, exhaustive 
experimentation has been carried out in order to extract 
the most efficient structure, which is going to participate 
in the comparative analysis. Since the FIRN can be 
regarded as an IIRN without feedback, the D-FUNCOM 
[6] algorithm is chosen to be the training method for the 
neural network models. Thus, the structures of the 
suggested filter and those of the DFNN and the neural 
networks are evaluated using a similar learning method, 
since our concern in this paper is to investigate the 
performance of different models rather than focusing on 
the learning attributes of the training algorithm. The 
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Based on the results cited in Table 3, it becomes evident 
that the dynamic nature of the channel is clearly reflected 
to the results, since the FIRN neural network fails in 
sufficiently tracking the passage dynamics, T . 
Moreover, the proposed filter exhibits superior 
performance compared to IIRN and FIRN, and a similar 
performance compared to DFNN, requiring the same 
number of parameters with respect to DFNN. Therefore, 
it can be argued that the suggested dynamic neural model 
constitutes an effective noise cancellation tool, with a 
reduced complexity compared to its competing rivals. 

)(1 ⋅−

structural and learning characteristics of the competing 
filters are given in Table 2 while Table 3 hosts the 
simulation results. 
 

Table 3 
Comparative analysis 

Model MSEtrn MSEtst Parameters 
BDRNN 0.01290 0.01240 64 
DFNN 0.01360 0.01310 62 

IIR 0.0157 0.01690 87 
FIR 0.0617 0.06180 85 

 

  
(a) information signal s(k) (b) additive noise n(k) 
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(c) noise corrupted  signal d(k) (d) recovered signal  $( )s k

Fig. 3 
 

Table 2 
Characteristics of the comparing filters 

Model Learning 
Method Iterations Model’s characteristics 

DFNN D-FUNCOM 1000 H=4 Ou=2 Oy1=1 Oy2=2 Oy3=1 
FIRN D-FUNCOM 1000 H=12 Ou=2 Oy=2 
IIRN D-FUNCOM 1000 H=12 Ou=2 Oy1=1 Oy2=2 Oy3=1 

 
 

 
 
5.  Conclusion 
 
A new dynamic filter, with a relatively simple structure, 
for adaptive noise cancellation has been proposed. The 

cancellation problem has been transformed to a system 
identification problem, tackled by an identifier based on 
the Block-Diagonal Recurrent Neural Network.  The 
proposed filter has been applied to a noise cancellation 
problem, where the noise passes though a nonlinear 
dynamic channel. A comparative analysis with a series of 
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filters has been conducted, underlining the effectiveness 
of the proposed noise canceller. 
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