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Abstract

This paper presents a recurrent fuzzy-neural filter 
for adaptive noise cancellation. The cancellation task 
is transformed to a system-identification problem, 
which is tackled by use of the Dynamic Neuron-based 
Fuzzy Neural Network. Extensive simulation results 
are given and performance comparison with a series of 
other dynamic fuzzy and neural models is conducted, 
underlining the effectiveness of the proposed filter and 
its superior performance over its competing rivals. 

1. Introduction 

Extraction of an information signal buried in noise 
is one of the benchmark problems in the area of signal 
processing. The issue of noise cancellation is 
encountered in many cases, including the cancellation 
of broad-band interference in the side-lobes of an 
antenna array, interference in electrocardiographs, and 
periodic interference in speech signals. The most 
common method of signal estimation is to pass the 
noisy signal through a filter, which tends to suppress 
the noise while leaving the signal relatively 
unchanged. The filters applied to this problem are 
fixed or adaptive. The design of the former is based on 
prior knowledge of both the signal and the noise. 
Adaptive filters, on the other hand, have the ability to 
adjust their parameters automatically, requiring little or 
no prior knowledge of the signal or noise 
characteristics.

The issue of adaptive noise cancellation has been 
widely studied during the last decades and there exists 
a variety of filters in literature. Recently, fuzzy logic 
has been established as an effective tool for adaptive 
filtering, and several fuzzy filters have been proposed 
[1]-[3]. In all cases, however, the suggested structures 
are static and the series-parallel identification approach 
is followed. Therefore, these models provide 

insufficient signal estimations when noise passes 
through nonlinear dynamic channels. 

In an attempt to alleviate this problem, the 
Dynamic Fuzzy Neural Network [4], has been 
suggested as a dynamic adaptive noise canceller. As 
shown in [4], DFNN is capable of effectively model 
the dynamics of a channel and exhibits superior 
cancellation performance compared to the 
aforementioned static fuzzy models.  

In this work an alternative recurrent fuzzy 
structure is proposed as a noise cancellation filter. The 
filter is implemented by the Dynamic Neuron-based 
Fuzzy Neural Network, which has been proposed in 
[5] as an efficient identification tool. 

The rest of paper is organized as follows: In 
Section II the transformation of the noise cancellation 
problem to a system identification problem is given. In 
the next section the proposed inference system and the 
modeling method are briefly described. Finally, 
Section IV hosts the simulation results, where a 
comparative analysis with other recurrent fuzzy and 
neural models is conducted. 

2. Transformation of the noise cancellation 
problem to a system identification problem 

According to [6], a typical structure of a noise 
cancellation system is shown in Fig. 1 where additive 
noise, )(kn , corrupts the information signal, )(ks ,

resulting in the noise signal, )(kd . The noise and 

information signals are assumed to be uncorrelated. 
The principle of noise cancellation is based on the 
assumption that both the noisy signal )(kd , and a 

filtered or distorted measurement of the noise, named 
reference noise )(kx , are available. Noise )(kx  is 

considered to pass through a channel with a transfer 
function (.)T . Under the assumption that the inverse 

of the filter noise distortion can be estimated, the noise 
corrupting the signal can be identified and cancelled. 
In this perspective, the problem of noise cancellation 
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can be transformed to a system identification problem 
[7] as follows: 
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Figure 1. The problem of adaptive noise 
cancellation

d k( )
x k( )

( )y k

e k( )

F(.)

T 1(.)
n k( )

s k( )non-accesiblepart

Filter

Figure 2. Adaptive noise cancellation as a 
system identification problem

Let (.)F  denote the transfer function of the 

system. It is derived from Fig. 2: 

))((ˆ)())(()(ˆ 1 kxTknkxFky     (1) 

and
)()(ˆ)()()(ˆ)()( kskyknkskykdke  (2) 

Let )(kx , )(kd  be considered as the desired input 

and output, respectively, of the system (.)F .

According to (1) and (2) the error )(ke  will 

correspond to the information signal, which can be 
regarded as noise, additive to the output of the system 

)(ˆ ky , as shown in Fig. 2. 

It is derived from (2): 

)(ˆ)(2)()(2)(ˆ)(

)()()(ˆ)()(
2

2222

kyksEknksEkyknE

ksEkeEkykdke

              (3) 
The information signal is statistically uncorrelated to 
the noise )(kn  and its estimate )(ˆ ky . Therefore the 

last two terms of (3) are equal to zero and (3) becomes 

222 )(ˆ)()()( kyknEksEkeE     (4) 

Applying an optimization method, the parameters 
of the adaptive filter should be adjusted such that an 
error measure is minimized. Since the power of the 
information signal remains unchanged, minimizing the 
error measure leads to minimization of 

2)(ˆ)( kyknE  and, according to (4), to 

minimization of the quantity 2)()( kskeE . Thus, 

minimization of the total output power of the adaptive 
model leads to the optimal mean squared estimate of 
the information signal. 

3. The proposed inference system and the 
modeling method 

 As shown in the previous section, the noise 
cancellation problem can be handled as a system 
identification problem. In this perspective, the fuzzy 
inference system employed to perform system 
identification is the DN-FNN [5]. The classic TSK 
model consists of a set of linguistic IF-THEN rules 
with polynomial consequent parts: 

( )
1 1

0 1 1

:       ...       

...
j j

jj j
m m

j j j j j
j n n

R z is A z is A

g w w u w u

IF AND AND
THEN

 (5) 

where, in the general case, the consequent part of each 
fuzzy rule comprises its own input vector 

1[ ... ]
j

j jj
nu u u  and the premise part input vector 

1[ ... ]mz uz  is common to all rules. If the consequent 

part input variables j
iu  are substituted by the recurrent 

functions ( ) ( ), ( ), ( 1),..., ( )( )j j j
ji ji ux k f x k i u k u k u k O ,

then the rule outputs are linear combinations of the 
dynamic elements ( )jix k , which have internal 

feedback. In this case (5) becomes 

)(...)()(

...:
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 Let the DN-FNN consist of r fuzzy rules, and be 
fed with fk  input-output data. The model output is 

given by 

1
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where

1

( )
( )

( )

j
j r

l
l

k
v k

k
 is the normalized degree of 

fulfillment for the  j-th rule. 
 When a single-dimensional input vector u is
considered, the functions of dynamic elements can be 
written

)( 02
0

1 )()()( jijiji

Ou

q
jiqji wikxwqkuwfkx

              (8) 
where tanh(.)(.)f  is the activation function. The 

neuron that implements this function is called dynamic 
neuron (DN), having an output feedback structure. The 
DN is characterized by the orders of the infinite 
impulse response (IIR) synapse, uO  and i; thus the 

formalism ( , )uDN O i  fully determines a dynamic 

neuron.
 As mentioned in [5], the DN-FNN is a generalized 
TSK dynamic model. The rules are not linked with 
each other in time, neither through external nor 
internal feedback; they are connected merely via the 
defuzzification part. The premise and deffuzification 
blocks are static while the consequent block is 
dynamic. Moreover, the linear constraint that the 
neurons of each consequent part should fulfill 
facilitates the transformation of the DN-FNN to an 
autoregressive model; therefore, the Dynamic 
Orthogonal Least Squares method (D-OLS), which 
constitutes an adaptation of the standard OLS 
algorithm to recurrent systems, can be applied to 
determine the structure and tune the parameters of the 
DN-FNN.
 The D-OLS is fully described in [5]. In brief, the 
method aims at developing DN-FNN models by 
transforming them to autoregressive models. In the 
sequel, for a given partition of the input space, the 
modeling method builds the consequent parts of the 
fuzzy rules. From a set of candidate dynamic neurons 

( , )uDN O i , yOi ,...,1 , the D-OLS selects the most 

significant neurons for each rule and calculate its 
coefficients. The method is a sequential procedure, 
where at each step the most significant consequent 
term (dynamic neuron) is extracted from a pool of 
candidate terms. When the process is completed, the 
selected dynamic neurons are appended to the 
consequent parts of the corresponding rules and their 
coefficients are calculated. 
 The output of the DN-FNN can be written in the 
form: 

1 1
1

1 1

( ) ( ) ( ) ... ( )

( ) ( )

j j

j

r

j j j jn jn
j

nr

j jl jl
j l

y k v k x k x k

v k x k

(9)

Introducing the following vectors 

1 2( ) [ ( ) ( )] [ ( ), ( ),...., ( )]Tj jl Qk v k x k w k w k w kw

rj ,...,1 , jnl ,...,1 ,
r

j
jnQ

1

    (10) 

T
Qbbbk ]....,,,[][)( 21jlb rj ,...,1 , jnl ,...,1

              (11) 
(9) is written 

1

( ) ( )
Q

j j
j

y k w k b          (12) 

Equation (12) corresponds to an autoregressive model. 
 The classic Orthogonal Least Squares Method is 
applied to autoregressive models in the form of (8), 
selects the most significant terms jw  from the set of Q
candidate terms and calculates the corresponding 
coefficients jb . However, in the case of dynamic 

systems these terms are quite different from the 
respective terms in [8], where the classic OLS method 
is applied to static fuzzy systems. In [8] for a given 
data set, jw  was completely determined. In the case of 

dynamic systems, as shown in (10), each term jw  is 

the product of a normalized degree of fulfillment, 
( )jv k , and a neuron output, ( )jlx k . For a given 

dataset, ( )iv k  is determined. In order to determine the 

neuron output ( )jlx k , the structure of the neuron 

should be selected (neuron type and feedback 
structure) and their parameters should be calculated. 
Since the neurons are dynamic, the values of jw  are 

calculated recursively. Thus they are related through 
the dynamics of the DN ’s. Therefore they are 
unknown and should be calculated as well. For the 
DN-FNN model under consideration, the type and 
structure of DN ’s have been determined in the 
previous subsection. The parameters of ( )jlx k  remain 

unknown and should be determined through a learning 
process, since different parameter values lead to 
different trajectories of ( )jlx k  within the time interval 

],1[ fk  and, consequently, to different terms jw .

Therefore, at each step of the D-OLS process a 
learning algorithm should be applied. As described in 
[5], the D-FUNCOM learning method [4] is employed. 
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A detailed mathematical description of the method 
along with a presentation in pseudo-C code can be 
found in [5]. 
 During the model generation process, the data are 
separated to: a) a training data set trD , used by the 

learning algorithm, and b) a validation data set valD ,

considerably smaller than trD , used as a stopping 

criterion, in order to decide the number of dynamic 
neurons that should be included in the final model. At 
each step of the D-OLS algorithm the error measure 
for valD  is monitored. As learning proceeds and the 

error measure keeps reducing, new DN’’s are added to 
the model. The D-OLS algorithm is terminated when 
increase of the error measure for valD  in two 

successive steps is observed. The last two selected
RF’s are rejected.

4. Simulation results 

In this section the proposed filter is applied to a 
noise cancellation problem, where the noise )(kn
passes through a nonlinear dynamic channel, 
producing the reference noise )(kx . The passage’s 

dynamics is simulated by a second order nonlinear 
auto-regressive model with exogenous inputs (NARX) 
[7]: 

)1()2(08.0)2(1.0)3(2.0

)2(1.0)1(5.0)2(1.0)1(25.0)(
2 kxknknkn

knknkxkxkx

              (13) 
The information signal )(ks  is a saw-tooth signal 

of unit magnitude, 50 samples period, as shown in Fig. 
3a. The signal )(ks  is corrupted by a uniformly 

distributed white noise sequence varying in the range 
]2,2[  shown in Fig. 3b while the noise-corrupted 

signal )(kd  is depicted in Fig. 3c. Both the training 

and testing data sets consist of 1000 pairs )(),( kdkx ,

while the validation set consists of 500 data pairs. 
Following the procedure presented in [5], four 

fuzzy sets are assigned to the input. They are 
uniformly distributed along the input space, leading to 
a DN-FNN with four fuzzy rules. The consequent parts 
of the fuzzy rules will be a linear combination of the 
dynamic neurons that will be selected. Each rule 
comprises candidate dynamic neurons with maximum 
delay max 5d , therefore the size of the set of 

candidate consequent terms is 4 5 20 . The dynamic 
neuron outputs are given by (8). The order uO  is set to 

1. The rest of the learning parameters are shown in 
Table I. At each step all candidate dynamic neurons 

are trained for 100 epochs. As mentioned in the 
previous section, the dynamic neuron introduces 
internal recurrence to the fuzzy model and is 
characterized by the orders uO  and i ( max1,...,i d ).

The model-building process is presented in the 
sequel. The procedure stops at the eighth step, where 
an increase of the error measure for the validation data 
set in two successive steps is observed. Therefore, the 
final model includes the first six selected DN ’s. The 
error sequences for the training and validation data sets 
are given in Table II, along with the kind of the 
selected neurons and the rules they are attached to. 
According to Table II, the following comments are in 
order:

All four rules are activated and the input space is 
fully covered by fuzzy sets, since terms from every 
rule are selected. 
Each rule requires dynamic neurons with different 
feedback, leading to the conclusion that the 
introduction of recurrence to the consequent part of 
the fuzzy rules is reasonable. Since each rule of the 
TSK model constitutes a local sub-model that 
operates in the region specified by the premise part 
of the rule, the identification problem in each 
region requires sub-models of various 
complexities. 
The evolution of the error measures with respect to 
the selected DN ’s for the training and validation 
data sets is quite similar, a fact that can be 
attributed to the parallel learning mode. The final 
model attains MSE values of 0.01230, 0.01248 and 
0.01241 for the training, validation and checking 
data sets, respectively, that are quite close to each 
other. Therefore, it can be argued that the model 
does not merely memorize the functional 
relationship of the input-output training data but 
identifies effectively the plant’s dynamics, ensuring 
generalization.
A time section of eight periods of the recovered 
signal is presented in Fig.3d. It is evident that even 
though the information signal has half the 
amplitude of the additive noise, the former is 
accurately identified, with the exception of a few 
high frequency components. 

Table 1. The learning parameters of the D-
FUNCOM method 

n n min 0

1.05 0.9 1E-4 0.1 0.9 

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on 
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05) 
0-7695-2504-0/05 $20.00 © 2005 IEEE 



(a) Information signal s(k)

(b) Additive noise n(k)

(c) Noise corrupted  signal d(k)
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(d) Recovered signal ( )s k
Figure 3.

Table 2. Ordering of the selected DN’s and the 
corresponding error measures for the training 

and validation sets 

No of DN Rule DN
MSE

training
MSE

validation
1 2 1 0.44330 0.45048 
2 3 1 0.16180 0.16445 
3 1 1 0.09981 0.10141 
4 4 1 0.05100 0.05181 
5 2 2 0.02450 0.02489 
6 3 2 0.01230 0.01248
7 1 3 0.01092 0.01294 
8 2 3 0.01078 0.01356 

In the sequel, a comparative analysis is attempted 
between the suggested recurrent fuzzy filter and a class 
of noise cancellation filters including finite impulse 
response (FIR) and infinite impulse response (IIR) 
neural networks and fuzzy inference systems as 
described in the following: 

A Dynamic Fuzzy Neural Network (DFNN), taken 
from [4]. 

A recurrent three-layer neural network (FIRN), in 
the form of 1- H -1, having a linear input layer, and 
FIR synapses at the hidden and output layers, as 
described in [4]. The outputs of the hidden and output 
layers are given by the following formulas: 

3

0

11 )(tanh)( i

Ou

q
qii wqkuwkO Hi ,...,1  (14a) 

6

1 0

14 )(tanh)( wqkOwky
H

j

Oy

q
jqj    (14b) 

A recurrent three-layer neural network (IIRN), in 
the form of 1- H -1, having a linear input layer, and 
Frasconi-Gori-Soda [9] neurons in the hidden and 
output layers. The outputs of these neurons are 
determined by the following formulas: 

3

1

12

0

11
1

)()(tanh)( i

Oy

j
iij

O

q
iqi wjkOwqkuwkO

u

              (15a) 

6

1

5

1 0

14
23

)()(tanh)( wjkywqkOwky
Oy

j
j

H

j

Oy

q
jjq

(15b)
where Hi ,...,1

For each of the above-mentioned models, 
exhaustive experimentation has been carried out in 
order to extract the most efficient structure, which is 
going to participate in the comparative analysis. Since 
the FIRN can be regarded as an IIRN without 
feedback, the D-FUNCOM algorithm is chosen to be 
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the training method for the neural network models. 
Thus, the structures of the suggested filter and those of 
the DFNN and the neural networks are evaluated using 
a common learning method, since our concern in this 
paper is to investigate the performance of different 
models rather than focusing on the learning attributes 
of the training algorithm. The structural and learning 
characteristics of the competing filters are given in 
Table III while Table V presents the simulation results. 

Based on the results cited in Table IV, it becomes 
evident that the dynamic nature of the channel is 
clearly reflected to the results, since the FIRN neural 
network fail in sufficiently tracking the passage 

dynamics, )(1T . Moreover, the proposed filter 

exhibits superior performance compared to IIRN and 
FIRN, and a similar performance compared to DFNN. 
Additionally, the model-building process has led to a 
considerably smaller model, requiring half the 
parameters of DFNN and nearly one third of the 
parameters of the neural models. This fact is due to the 
local modeling approach and the inference 
characteristics of the fuzzy systems. It becomes evident 
that the suggested neuro-fuzzy dynamic model 
constitutes an effective noise cancellation tool, with a 
reduced parameter set. 

Table 4. Comparative analysis 

Model MSE training MSE testing Parameters 
DN-FNN 0.01230 0.01241 30 
DFNN 0.01360 0.01310 62 

IIR 0.01570 0.01690 87 
FIR 0.06170 0.06180 85 
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