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Abstract

This paper presents a recurrent fuzzy-neural filter
for adaptive noise cancellation. The cancellation task
is transformed to a system-identification problem,
which is tackled by use of the Dynamic Neuron-based
Fuzzy Neural Network. Extensive simulation results
are given and performance comparison with a series of
other dynamic fuzzy and neural models is conducted,
underlining the effectiveness of the proposed filter and
its superior performance over its competing rivals.

1. Introduction

Extraction of an information signal buried in noise
is one of the benchmark problems in the area of signal
processing. The issue of noise cancellation is
encountered in many cases, including the cancellation
of broad-band interference in the side-lobes of an
antenna array, interference in electrocardiographs, and
periodic interference in speech signals. The most
common method of signal estimation is to pass the
noisy signal through a filter, which tends to suppress
the noise while leaving the signal relatively
unchanged. The filters applied to this problem are
fixed or adaptive. The design of the former is based on
prior knowledge of both the signal and the noise.
Adaptive filters, on the other hand, have the ability to
adjust their parameters automatically, requiring little or
no prior knowledge of the signal or noise
characteristics.

The issue of adaptive noise cancellation has been
widely studied during the last decades and there exists
a variety of filters in literature. Recently, fuzzy logic
has been established as an effective tool for adaptive
filtering, and several fuzzy filters have been proposed
[1]-[3]. In all cases, however, the suggested structures
are static and the series-parallel identification approach
is followed. Therefore, these models provide

insufficient signal estimations when noise passes
through nonlinear dynamic channels.

In an attempt to alleviate this problem, the
Dynamic Fuzzy Neural Network [4], has been
suggested as a dynamic adaptive noise canceller. As
shown in [4], DFNN is capable of effectively model
the dynamics of a channel and exhibits superior
cancellation  performance  compared to  the
aforementioned static fuzzy models.

In this work an alternative recurrent fuzzy
structure is proposed as a noise cancellation filter. The
filter is implemented by the Dynamic Neuron-based
Fuzzy Neural Network, which has been proposed in
[5] as an efficient identification tool.

The rest of paper is organized as follows: In
Section II the transformation of the noise cancellation
problem to a system identification problem is given. In
the next section the proposed inference system and the
modeling method are briefly described. Finally,
Section IV hosts the simulation results, where a
comparative analysis with other recurrent fuzzy and
neural models is conducted.

2. Transformation of the noise cancellation
problem to a system identification problem

According to [6], a typical structure of a noise
cancellation system is shown in Fig. 1 where additive
noise, n(k), corrupts the information signal, s(k),
resulting in the noise signal, d(k). The noise and
information signals are assumed to be uncorrelated.

The principle of noise cancellation is based on the
assumption that both the noisy signal d(k), and a
filtered or distorted measurement of the noise, named
reference noise x(k), are available. Noise x(k) is
considered to pass through a channel with a transfer
function 7'(.). Under the assumption that the inverse
of the filter noise distortion can be estimated, the noise

corrupting the signal can be identified and cancelled.
In this perspective, the problem of noise cancellation
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can be transformed to a system identification problem
[7] as follows:

n(k)

Figure 1.The problem of adaptive noise
cancellation

x(k)—>

,,,,,,,,,,,,,,,,,,,

Filter

Figure 2. Adaptive noise cancellation as a
system identification problem

Let F(.) denote the transfer function of the
system. It is derived from Fig. 2:
(k) = F(x(k)) = n(k) =T~ (x(k)) 1)
and
e(k) = d(k) - y(k) = s(k) + n(k) — y(k) > s(k) (2)
Let x(k), d(k) be considered as the desired input
and output, respectively, of the system F(.).
According to (1) and (2) the error e(k) will

correspond to the information signal, which can be
regarded as noise, additive to the output of the system
y(k) , as shown in Fig. 2.

It is derived from (2):
e (k) =(d(k) - p(k) )’ :E{ez(k)}: E{sz(k)}+
4 E{(n00) - 560 P J+ 2B {5tk - n(h) 2B {5k - 506
(3)

The information signal is statistically uncorrelated to
the noise n(k) and its estimate p(k). Therefore the

last two terms of (3) are equal to zero and (3) becomes

ER () |=El () e E{ntky-50) F | 4)
Applying an optimization method, the parameters
of the adaptive filter should be adjusted such that an
error measure is minimized. Since the power of the
information signal remains unchanged, minimizing the
error  measure leads to  minimization  of

Elno) - 5P| and,
minimization of the quantity £ {(e(k)—s(k))z}. Thus,
minimization of the total output power of the adaptive

model leads to the optimal mean squared estimate of
the information signal.

according to (4), to

3. The proposed inference system and the
modeling method

As shown in the previous section, the noise
cancellation problem can be handled as a system
identification problem. In this perspective, the fuzzy
inference system employed to perform system
identification is the DN-FNN [5]. The classic TSK
model consists of a set of linguistic [F-THEN rules

with polynomial consequent parts:
RV IF z is Alj AND ... AND z,, is 4],
THEN g, = wl +wlul +...+wr{_ur{

)

where, in the general case, the consequent part of each
fuzzy rule comprises its own input vector

u’ :[uii ui ] and the premise part input vector
z=[z,..u,] is common to all rules. If the consequent
part input variables u;i are substituted by the recurrent
functions x;;(k) = (x;(k—i)u (k)1 (k=1),...0 (k=0,)),
then the rule outputs are linear combinations of the
dynamic elements x;(k), which have internal
feedback. In this case (5) becomes
RY : IF z(k)is A/ AND ... AND z,,(k)is A7
THEN g;(k)=0; -x;(k)+..+ O, X ju, (k)
Let the DN-FNN consist of » fuzzy rules, and be
fed with k, input-output data. The model output is

(6)

given by
21 (k)-g; (k)
(k) =L"— = v, (k)-g; (k) (7)

D (k) I
=1
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(k)

r

D (k)
=1

fulfillment for the j-th rule.

When a single-dimensional input vector u is
considered, the functions of dynamic elements can be
written

Ou
x (k) = f(zwljiq ulk—q)+wy ;- x;(k—i)+ W()ji)

q=0
®)
where f(.)=tanh(.) is the activation function. The
neuron that implements this function is called dynamic
neuron (DN), having an output feedback structure. The
DN is characterized by the orders of the infinite
impulse response (IIR) synapse, O, and i; thus the

where v; (k)= is the normalized degree of

formalism DN(O,,i) fully determines a dynamic

neuron.

As mentioned in [5], the DN-FNN is a generalized
TSK dynamic model. The rules are not linked with
each other in time, neither through external nor
internal feedback; they are connected merely via the
defuzzification part. The premise and deffuzification
blocks are static while the consequent block is
dynamic. Moreover, the linear constraint that the
neurons of each consequent part should fulfill
facilitates the transformation of the DN-FNN to an
autoregressive model; therefore, the Dynamic
Orthogonal Least Squares method (D-OLS), which
constitutes an adaptation of the standard OLS
algorithm to recurrent systems, can be applied to
determine the structure and tune the parameters of the
DN-FNN.

The D-OLS is fully described in [5]. In brief, the
method aims at developing DN-FNN models by
transforming them to autoregressive models. In the
sequel, for a given partition of the input space, the
modeling method builds the consequent parts of the
fuzzy rules. From a set of candidate dynamic neurons
DN(O,,i), i=1,..,0,, the D-OLS selects the most

significant neurons for each rule and calculate its
coefficients. The method is a sequential procedure,
where at each step the most significant consequent
term (dynamic neuron) is extracted from a pool of
candidate terms. When the process is completed, the
selected dynamic neurons are appended to the
consequent parts of the corresponding rules and their
coefficients are calculated.

The output of the DN-FNN can be written in the
form:

y(k):zg,(k)-[eﬂ (k)40 X, (k)} -
=

n )
=Y > [v k) x; (k) ]-6,
Jj=11=1
Introducing the following vectors
w(k) =[v; (k)- Xl ()] =[w (k), w, (k),...., WQ(k)]T
j=lear, I=l..n;, 0=>n, (10)
j=1
b(k) =[0;1=[by.byuesbpl’ j=losr, I=1..n;
(1
(9) is written
0
y(k) =" w;(k)-b, (12)
Jj=1

Equation (12) corresponds to an autoregressive model.

The classic Orthogonal Least Squares Method is
applied to autoregressive models in the form of (8),
selects the most significant terms w; from the set of O

candidate terms and calculates the corresponding
coefficients b;. However, in the case of dynamic

systems these terms are quite different from the
respective terms in [8], where the classic OLS method
is applied to static fuzzy systems. In [8] for a given

data set, w; was completely determined. In the case of

dynamic systems, as shown in (10), each term w; is

the product of a normalized degree of fulfillment,
v;(k), and a neuron output, x;(k). For a given

dataset, v;(k) is determined. In order to determine the

neuron output x;(k), the structure of the neuron

should be selected (neuron type and feedback
structure) and their parameters should be calculated.
Since the neurons are dynamic, the values of w; are

calculated recursively. Thus they are related through
the dynamics of the DN ’s. Therefore they are
unknown and should be calculated as well. For the
DN-FNN model under consideration, the type and
structure of DN ’s have been determined in the
previous subsection. The parameters of x; (k) remain

unknown and should be determined through a learning
process, since different parameter values lead to
different trajectories of x (k) within the time interval

[Lk;] and, consequently, to different terms w;.

Therefore, at each step of the D-OLS process a
learning algorithm should be applied. As described in
[5], the D-FUNCOM learning method [4] is employed.
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A detailed mathematical description of the method
along with a presentation in pseudo-C code can be
found in [5].

During the model generation process, the data are
separated to: a) a training data set D,., used by the

learning algorithm, and b) a validation data set D,

considerably smaller than D,., used as a stopping
criterion, in order to decide the number of dynamic
neurons that should be included in the final model. At
each step of the D-OLS algorithm the error measure
for D,, is monitored. As learning proceeds and the
error measure keeps reducing, new DN’’s are added to
the model. The D-OLS algorithm is terminated when
increase of the error measure for D,, in two
successive steps is observed. The last two selected
RF”s are rejected.

4. Simulation results

In this section the proposed filter is applied to a
noise cancellation problem, where the noise n(k)

passes through a nonlinear dynamic channel,
producing the reference noise x(k). The passage’s
dynamics is simulated by a second order nonlinear
auto-regressive model with exogenous inputs (NARX)
71
[x(]k) =025x(k—-1)+0.1 x(k—2)+0.5 n(k—1)+0.1 n(k-2)—
02 n(k-3)+0.1n* (k—2)+0.08 n(k—2) x(k—1)
13)

The information signal s(k) is a saw-tooth signal
of unit magnitude, 50 samples period, as shown in Fig.
3a. The signal s(k) is corrupted by a uniformly
distributed white noise sequence varying in the range
[-2,2] shown in Fig. 3b while the noise-corrupted

signal d(k) is depicted in Fig. 3c. Both the training
and testing data sets consist of 1000 pairs [x(k),d(k)],

while the validation set consists of 500 data pairs.
Following the procedure presented in [5], four
fuzzy sets are assigned to the input. They are
uniformly distributed along the input space, leading to
a DN-FNN with four fuzzy rules. The consequent parts
of the fuzzy rules will be a linear combination of the
dynamic neurons that will be selected. Each rule
comprises candidate dynamic neurons with maximum
delay d, =5, therefore the size of the set of

candidate consequent terms is 4 x5 =20 . The dynamic
neuron outputs are given by (8). The order O, is set to

1. The rest of the learning parameters are shown in
Table I. At each step all candidate dynamic neurons

are trained for 100 epochs. As mentioned in the
previous section, the dynamic neuron introduces
internal recurrence to the fuzzy model and is
characterized by the orders O, andi(i=1,....d

max )
The model-building process is presented in the

sequel. The procedure stops at the eighth step, where

an increase of the error measure for the validation data
set in two successive steps is observed. Therefore, the
final model includes the first six selected DN ’s. The
error sequences for the training and validation data sets
are given in Table II, along with the kind of the
selected neurons and the rules they are attached to.

According to Table II, the following comments are in

order:

e All four rules are activated and the input space is
fully covered by fuzzy sets, since terms from every
rule are selected.

e Each rule requires dynamic neurons with different
feedback, leading to the conclusion that the
introduction of recurrence to the consequent part of
the fuzzy rules is reasonable. Since each rule of the
TSK model constitutes a local sub-model that
operates in the region specified by the premise part
of the rule, the identification problem in each
region  requires  sub-models of  various
complexities.

e The evolution of the error measures with respect to
the selected DN ’s for the training and validation
data sets is quite similar, a fact that can be
attributed to the parallel learning mode. The final
model attains MSE values of 0.01230, 0.01248 and
0.01241 for the training, validation and checking
data sets, respectively, that are quite close to each
other. Therefore, it can be argued that the model
does not merely memorize the functional
relationship of the input-output training data but
identifies effectively the plant’s dynamics, ensuring
generalization.

e A time section of eight periods of the recovered
signal is presented in Fig.3d. It is evident that even
though the information signal has half the
amplitude of the additive noise, the former is
accurately identified, with the exception of a few
high frequency components.

Table 1. The learning parameters of the D-
FUNCOM method

l’l+ n Amin AO g
1.05 0.9 1E-4 0.1 0.9
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2 Table 2. Ordering of the selected DN’s and the
15 1 corresponding error measures for the training
10 - and validation sets
N Noof DN | Rule | DN | A MSE MSE
00 4 training validation
s 1 2 1 0.44330 0.45048
2 3 1 0.16180 0.16445
0 3 1 1 0.09981 0.10141
i 4 4 1 0.05100 0.05181
20 : : : : : . . 5 2 2 0.02450 0.02489
0 50 100 150 200 250 300 350 400 6 3 2 001230 0_01 248
(a) Information signal s(k) 7 1 3 0.01092 0.01294
8 2 3 0.01078 0.01356

2.5

= In the sequel, a comparative analysis is attempted

between the suggested recurrent fuzzy filter and a class
of noise cancellation filters including finite impulse
response (FIR) and infinite impulse response (IIR)

L5 A
1.0 o
0.5 o

0.0

o neural networks and fuzzy inference systems as
I described in the following:

15 e A Dynamic Fuzzy Neural Network (DFNN), taken
20 from [4].

25 e A recurrent three-layer neural network (FIRN), in

0 30 100 150 200 250 300 350 400

the form of 1- H -1, having a linear input layer, and
(b) Additive noise n(k)

FIR synapses at the hidden and output layers, as
y described in [4]. The outputs of the hidden and output
v layers are given by the following formulas:

20 4 Ou

s 0} (k) = tanh{Z[w}q u(k — q)]+ w?J i=1,., H (14a)
q=0

1o 4
0.5 A
0.0 A

H Oy
as 4 y(k)= tanh[ZZ[w?q 0}- (k- q)]+ W6] (14b)

-L0 N
15 A Jj=14=0

201 e A recurrent three-layer neural network (IIRN), in

jz ] the form of 1- H -1, having a linear input layer, and

0 S0 100 150 200 250 300 350 400 Frasconi-Gori-Soda [9] neurons in the hidden and

(c) Noise corrupted signal d(k) output layers. The outputs of these neurons are
determined by the following formulas:

0, Oy,
] 0} (k) :tanh[z wiu(k —q)y+ Y wi0] (k- j) +w§]
, q=0 j=1

(15a)

L& 4 & s 6
y(k) =tanhl > w} O} (k —q)+Y wiy(k - j) +w
=140 A

(15b)

where i=1,....H
For each of the above-mentioned models,
0 50 10 10 200 250 300 350 400 exhaustive experimentation has been carried out in
order to extract the most efficient structure, which is
(d) Recovered signal $(k) going to participate in the comparative analysis. Since
Figure 3. the FIRN can be regarded as an IIRN without
feedback, the D-FUNCOM algorithm is chosen to be
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the training method for the neural network models.
Thus, the structures of the suggested filter and those of
the DFNN and the neural networks are evaluated using
a common learning method, since our concern in this
paper is to investigate the performance of different
models rather than focusing on the learning attributes
of the training algorithm. The structural and learning
characteristics of the competing filters are given in
Table III while Table V presents the simulation results.

Based on the results cited in Table IV, it becomes
evident that the dynamic nature of the channel is
clearly reflected to the results, since the FIRN neural
network fail in sufficiently tracking the passage

dynamics, 77 '(). Moreover, the proposed filter

exhibits superior performance compared to I[IRN and
FIRN, and a similar performance compared to DFNN.
Additionally, the model-building process has led to a
considerably smaller model, requiring half the
parameters of DFNN and nearly one third of the
parameters of the neural models. This fact is due to the
local modeling approach and the inference
characteristics of the fuzzy systems. It becomes evident
that the suggested neuro-fuzzy dynamic model
constitutes an effective noise cancellation tool, with a
reduced parameter set.

Table 4. Comparative analysis

Model MSE training | MSE testing Parameters
DN-FNN 0.01230 0.01241 30
DFNN 0.01360 0.01310 62
IIR 0.01570 0.01690 87
FIR 0.06170 0.06180 85
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