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Abstract 
 The generation of an entry control policy for an 

assembly plant using a reinforcement learning agent is 

investigated. The assembly plan studied consists of ten 

workstations and produces three types of products. The 

objective of the entry control policy is to produce a 

given production mix within a planning horizon, while 

following a given production mix. Due to the large 

state space, a function approximator, based on a 

neural network, is used to model the long-term reward 

function. The schedules generated by the trained agent 

are compared to those produced by a deterministic 

heuristic control policy that has been developed for 

this assembly plant. Simulation results show that the 

reinforcement learning agent produces production 

plans that achieve better productivity than the heuristic 

controller under tight planning horizons, generating 

sub-optimal yet acceptable production mix balance.  

 

 

1. Introduction 
 

Production scheduling deals with the allocation of 
the resources of a manufacturing system to a set of 
activities so as to optimize managerial objectives while 
satisfying system constraints.  Typical managerial 
objectives include the minimization of make span, 
mean flow time, tardiness or the maximization of the 
resource utilization, while system constraints are 
related to the order in which the various processing 
activities are performed. Production scheduling 
problems usually belong to the NP-complete class of 
problems [1, 2]. Real-life scheduling problems are not 
amenable to analytical treatment and are studied mainly 
by developing specialized heuristics which often 
exploit individual characteristics of the manufacturing 
system and generate satisfactory but not optimal 

schedules. More recently, machine-learning techniques 
have been employed in an attempt to address 
production scheduling. In this paper, we investigate the 
application of a reinforcement learning (RL) in 
production scheduling.   

Production scheduling is often treated [3, 4] as a 
two-level decision process: at the upper level the entry 
control policy (system loading) is decided, while at the 
lower level the job routing and job sequencing are 
determined. The entry control policy determines the 
time and the type of the part to be loaded into the 
system, usually taking into account general system 
requirements (e.g. the required production mix, the 
time horizon) and system’s state (e.g. work-in-progress, 
bottleneck machine status). Job routing, on the other 
hand, deals with the assignment of operations to the 
manufacturing system machines and is required in 
cases in which some of the machines of the 
manufacturing system have the capability of carrying 
out more than one processing operations. Job 
sequencing, finally, identifies the job to be processed in 
a specific machine by selecting the job from a non-
empty set and it is required whenever a set of jobs are 
simultaneously requesting to be processed by the same 
machine. A practical and widely used approach to 
solving the job sequencing problem is the adoption of 
heuristic dispatching rules, such as FIFO or LIFO. 

This research investigates the application of a 
reinforcement learning approach in developing an 
upper-level controller that determines the entry control 
policy for a manufacturing system. To our knowledge 
no research has been reported to deal with this 
particular problem. 

The aim of the RL controller is to produce 
production schedules for the given manufacturing 
system which satisfy the demand while keeping a good 
balance of the production mix.  



The structure of this paper is as follows: section 2 
describes the reinforcement learning approach and its 
application to production scheduling, section 3 presents 
the manufacturing system which is used as a case study, 
the managerial objectives that should be met by the 
schedulers that feed the manufacturing system and a 
heuristic controller that has been used for loading the 
manufacturing system. The reinforcement learning 
agent developed for the specific manufacturing system 
is described in section 4, together with the results 
obtained when the RL agent is used to control the 
manufacturing system. A comparison of the RL agent 
to a heuristic controller is also presented in section 4. 
Section 5 concludes the paper by discussing the main 
finding of this research. 

 

2. Reinforcement Learning 
 

RL algorithms approximate dynamic programming 
on an incremental basis.  In contrast to dynamic 
programming, RL algorithms do not require a model of 
the dynamics of the system and can be used online in 
an operating environment.  A reinforcement learning 
agent senses its environment, takes actions and receives 
rewards depending on the effect of its actions on the 
environment.  The agent has no knowledge of the 
dynamics of the environment (it cannot predict the 
consequences of its actions).  Rewards provide the 
necessary information to the agent to adapt its control 
policy.  The aim of a reinforcement learning agent is to 
maximize the total reward received (simply called 
return) from the environment.  For successfully 
applying a RL algorithm the system has to be 
represented as a stationary Markov Decision Process 
(MDP). Figure 1 illustrates the interaction of the RL 
agent with the system. 
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RL agent 

tα ts1+tr

 
 

Figure 1.  The interaction of the RL agent 

with the simulation system. 
 

If Ss
t
∈  (S is a set of states) is the state of the 

system at time t then the RL agent decides the action 

At ∈α  (A is a finite set of actions) according to its 

current policy AS →:π .  The action 
tα  leads the 

system to its new state 1+ts  and results an immediate 

reward 1+tr . 

RL algorithms usually employ stochastic action 
selection policies.  A frequently used policy is the ε-
greedy policy: at each state the agent chooses with a 
probability 1-ε the action that returns the maximum 
expected long-term reward (a greedy action) and with a 
probability ε a random action (an explorative action). 
The estimated return is represented by the action value 
function ℜ→× ASQ : . A greedy action corresponds 

to the action associated with the maximum action 
value: 

)),((max)( ttt sQsV
t

α
α

= . 

ℜ→SV :  is called the state value function.  )( tsV  

is an estimation of the expected return when beginning 

from state 
t
s  the agent follows a strictly greedy policy.  

In tasks in which there is a final state the expected 

return 
tR  starting from state 

t
s  may be calculated as 

the sum of immediate rewards: 
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Tasks which have a final state are called episodic 
and the agent-system interaction from the initial to the 
final state is called an episode.  To allow learning in 
non-episodic task (non-terminating tasks) a discount 
rate γ ( 10 ≤≤ γ ) is introduced which discounts the 

present value of future rewards: 
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To progressively improve the control policy of the 
RL agent when a near greedy policy is followed, the 
estimations of the expected return, as represented by 

the action values ),(
tt

sQ α , need to be updated during 

the agent-system interaction. One of the most popular 
RL algorithms is the Q-learning algorithm [5]. The 

update of the action values ),(
tt

sQ α  with the Q-

learning algorithm are: 

ttttt asQsQ δαα +← ),( ),(  

where α  ( 10 <<α ) is a positive step-size 
parameter and 
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tδ  is the “error” of the estimation of the return.  The 

target value of ),(
tt

sQ α  is equal to the immediate 

received reward 1+tr  plus the discounted estimated 

state value )( 1+tsV of the next state.  Learning is based 

on temporally successive estimates of Q; this sort of 
learning is typical in Temporal Difference (TD) 
reinforcement learning algorithms.   

In the case of Q-learning the agent is able to learn 
the estimates of the optimal policy independently of the 
policy being followed (the agent does not need to take 
the best action at the next state).  Therefore Q-learning 
is considered an off-policy control algorithm.   

Another algorithm that can be used for the update of 
the action value function Q is the Sarsa algorithm [6]. 
In Sarsa the error 

tδ  is: 

),(),( 111 tttttt sQsQr ααγδ −+= +++
 

In Sarsa, the target value of ),(
tt

sQ α  is equal to the 

immediate received reward 1+tr  plus the discounted 

estimated action value ),( 11 ++ ttsQ α of the next action 

taken at the next state. Sarsa, in contrast to Q-learning, 
is an on-policy control algorithm. The agent learns the 
estimates of the policy being followed.   

Due to the near-greedy policy, better estimations of 
the followed policy, progressively result in better 
control policies.  Exploration is necessary for the agent 
to discover better states and actions in order to improve 
its policy.  

To improve the efficiency of RL algorithms, they 
can be combined with eligibility traces.  Eligibility 
traces keep track of the states visited and the actions 
taken so far and thus allow multiple updates of the 
action value function Q.   The value of using eligibility 
traces increases significantly in tasks which have long 
episodes and delayed rewards.    

The eligibility trace for state s and action α at time t 
is denoted ),( tt ase .  Each time an action is taken at 

some state, the corresponding eligibility trace is 
increased by 1.  At the same time, all eligibility traces 
are decayed by γλ, where γ is the discount rate and λ is 
the trace-decay parameter. The update of the action 
value function is performed for all states-action pairs s 
and a: 

),(),( ),( aseasQasQ ttαδ+←  

Only the visited state-action pairs which are tracked 
by the eligibility traces are actually updated.  Both Q-
learning and Sarsa can be combined with eligibility 
traces and are called Q(λ) and Sarsa(λ) respectively.  In 
the case of Q(λ), however, all eligibility traces must be 
set to zero after an exploratory action is taken.   

For problems in which the state space is small a 
table can be used for storing the action value function 
Q.  In real world problems, however, the state space is 
too large or even continuous, and the Q function cannot 
be represented in a tabular way.  In these cases  
function approximation techniques are employed to 
approximate the Q function.  Function approximation 
can be achieved by representing Q as a function of a 
parameterized vector.  For example, if an artificial 

neural network is used, then the  aQ  function (where 

),()( asQsQ tt

a = ) can be represented as a 

parameterized function of the state as input and the 
connection weights vector 

tw
r
 as the parameter vector, 

and a gradient descent technique (such as 
backpropagation [7]) may be used to adjust 

tw
r
.  A 

separate output unit, representing the value of )( t

a sQ , 

has to be used for each action A∈α .  Since states are 
indirectly represented by the weights vector, eligibility 
traces are represented as a vector 

te
r
 (one trace for each 

component of 
tw

r
).  The updates of the weights vector 

are: 
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tδ  is the error in the estimation of Q, as it was 

described above.  The derivative vector ),( ttw asQ
t

r∇  

is the gradient of ),( tt asQ  with respect to 
tw
r
.  

Intuitively, the weights which contribute more to the 
calculation of the Q value have larger eligibility traces.  

The pseudocode for Sarsa(λ) with a back-
propagation network as the function Q approximator is 
given below: 

 

initialize weights vector 
set eligibilities vector e to zero 
set s as the initial state 
 
Q = ΝΝw(s)  (forward propagate) 
a = arg maxa Q(a) 
with probability ε: a = random action 
 
repeat 

 decay all eligibilities by γλ 
 update eligibilities for action a (back propagate) 
 
 take action a, observe reward r, and next state s 
 
 δ = r - Q(a) 
 



 Q = ΝΝw(s)  (forward propagate) 
 a = arg maxa Q(a) 
 with probability ε: a = random action 
  
 if s is not terminal 
  δ = δ + γQ(a) 
   
 update weights vector w based on δ and e 
 
 Q = ΝΝw(s)     (forward propagate) 
until s is terminal 

 

2.1. Related work 
 
Probably the most impressive application of 

Reinforcement Learning is the TD-Gammon system 
[8], which achieved a master level in backgammon by 
applying the TD(λ) reinforcement learning algorithm 
(Temporal Difference algorithm [9]).  In TD-Gammon 
a neural network receives the full representation of the 
board and approximates the value function. Successful 
applications of RL algorithms to control problems have 
been reported. Crites and Barto [10], for example, 
employed RL algorithms for elevator dispatching. A 
team of RL agents using neural networks were trained 
to improve the performance of multiple elevator 
systems. Zhang and Dietterich [11] applied a RL 
method that learns to incrementally improve a repair-
based job-shop scheduler for the payloads placed in the 
cargo bay of the NASA space shuttle. Their objective 
was to schedule a set of tasks without violating any 
resource constraints while minimizing the total 
duration.  They use the TD(λ) algorithm (the same 
algorithm used in TD-Gammon) to learn an evaluation 
function over states of scheduling.   

A number of researchers have reported on 
employing reinforcement learning to address various 
problems related to manufacturing. Mahadevan et al. 
[12], for example, introduced a model-free algorithm 
for average-reward RL (called SMART). They apply 
the algorithm in controlling a production-inventory 
system with multiple product types.  In their system, 
there was a single machine capable of producing 
multiple types of products with multiple buffers for 
storing each of the different products. Whenever a job 
is finished, the machine may either undergo 
maintenance or start another job. The RL agent has to 
decide between these two actions in order to avoid 
costly repairs.  Mahadevan and Theocharous [13] 
applied SMART to a 3-machine transfer line producing 
a single product type. Their goal was to maximize the 
throughput of the transfer line while minimizing its 
work-in-process inventory and failures. They compared 

the policy from SMART to the kanban heuristic. Their 
results showed that the policy learned by SMART 
requires fewer items in inventory and results in fewer 
failures than with the Kanban heuristic. 

A number of researchers deal with the job-
sequencing problem. Liu and Dong [14] used the Q-
learning algorithm to train a neural network to select 
the most appropriate dispatching rules. Their results 
showed that the dispatching rules that are known to 
provide good results have higher probabilities of being 
selected by their trained neural network than the least 
desirable rules. In a similar approach, Wan and Usher 
[15] employed the Q-learning algorithm to the 
dispatching rule selection problem for a single 
machine. Their results showed that an agent trained 
with the Q-learning algorithm is able to identify the 
best rules for different system objectives. Aydin  and 
Öztemel [16] report similar results using the Q-III 
reinforcement learning algorithm.  

System scheduling (i.e. upper-level scheduling) 
bears some similarities to lower level scheduling since 
in both cases the objective is to determine the next job 
to be processed. However, the aim of system 
schedulers is much more complicated for a number of 
reasons: Firstly, system schedulers should consider the 
possibility of not loading any job into the system: given 
a production mix that has to be satisfied within a time 
horizon, there may be time instances at which the 
system scheduler decides not to load any part into the 
system, e.g. due to excessive work in progress. This 
option is not considered at machine-level job 
scheduling: whenever a set of jobs are simultaneously 
requesting to be processed by an available machine, 
one of them is always loaded to the machine.  

Furthermore, the machine-level schedulers reported 
in the literature, are presented with a small number of 
heuristic dispatching rules and attempt to develop a 
new policy by applying the most appropriate 
dispatching rule taking into account the system status. 
At any decision point, the machine-level dispatcher has 
to select one of the available dispatching rules.  

In the problem we consider, however, the set of 
available actions is not constant: at some points of 
time, some of the actions considered by the system 
scheduler may not be feasible e.g. because the machine 
required to process a part type is busy and its local 
buffer is full.  

In addition, machine-level controllers reported in 
the literature aim to optimize the performance of a 
single machine. The system-level controller we 
consider in our work aims at optimizing the 
performance of the whole manufacturing system which 
consists of a number of machines. As a result, our 
system-level controller needs to generate a control 



policy by considering the overall system status, while 
the actions taken may at some points deteriorate the 
performance of some machines in favour of improving 
the overall system performance.  

The systems reported in the literature consider a 
single machine, which process parts from an input 
buffer. The machine performs one operation at a time. 
As a result, at any point of time, the action to be taken 
is the selection of one part out of the input buffer. The 
next time at which a decision is required is when the 
machine completes the operation of the selected part. 
Similarly, in the manufacturing system we consider, the 
machines operate on parts selected from their input 
buffers and process them. In contrast to the systems 
reported in the literature, however, in our system, while 
the machine is carrying out an operation, (i.e. without 
any obvious state change) the scheduler may still 
decide whether to add another part in the machine's 
input buffer. This characteristic renders the system 
status more "continuous".  

 Finally, the manufacturing system we study is 
initially empty. The existence of many machines and 
the necessary set up operations result to a long transient 
period during which the RL agent takes actions without 
any obvious immediate effect. The effect of the actions 
taken by the RL agent become obvious at a later stage, 
when the parts start to be produced. This long transient 
period may have an affect on the behaviour of the RL 
agent.  

These features place additional difficulties on the 
application of RL to a system-level loading scheduler 
in comparison to a machine-level scheduler.  

The manufacturing system used to study the 
applicability of the RL approach on developing a 
system-level scheduler is described next.  

 

3. The manufacturing system 
 

The manufacturing system studied in this paper is a 
simplification of an existing assembly plant. In its 
simplified version, the assembly plant we consider 
consists of ten different workstations and produces 
three types of printed circuit boards (PCBs) referred to 
as Type A, B and C.  

The manufacturing system consists of ten 
workstations shown in Table 1. The workstations do 
not suffer from breakdowns but some of them require 
set up. More explicitly, the automatic surface mounting 
(workstation 2) and the Integrated Circuit testing 
machines (workstation 10) require a set up operation 
when a change in the type of board is encountered. 
Table 1 shows the set-up times for each machine of the 
workstation. 

 Parts waiting to be processed by the workstations 
are temporarily stored at workstation’s local input 
buffer which is of capacity of two. The dispatching rule 
used to select the next part to be processed from an 
input buffer is the FIFO rule.  

 
Table 1: The workstations of the 

manufacturing system.  
 

Work 
station 
Id 

Workstation  
Name  

 
Setup time 

1 Solder paste painting  
2 Surface Mounting 12 sec 
3 Reflow soldering  
4 SMD vision control  
5 Assembly  
6 Assembly   
7 Wave soldering  
8 Final assembly  
9 Vision control  
10 Integ. circuit test 24 sec 

 

Table 2: The routing of the part types.  
 

Board 

Type 

Routing (workstation id) 

A  1 2 3 4 5 7 9 10  
B  1 2 3 4 5 7 8 10  
C  1 2 3 4 6 7 8 9 10 

 
The routings of the three types are given in Table 2 

in terms of the sequence of the workstations they have 
to visit to complete their assembly. Each of operation 
required by the part types is carried out by one machine 

only and thus job routing is not required. The duration 
of the corresponding operations are given in Table 3.  
It is evident from the duration of the processes that the 
setup operation is a time-consuming activity. 

 
Table 3: Processing Times (in sec). 

 

Workstation id Board 

Type 1 2 3 4 5 6 7 8 9 10 

A 3 3 11 7 11 -- 19 -- 3  2 
B  3 3 11 13 20 -- 19 14 4 1 
C 3 5 11 15 -- 11 19 4 4 6 

 
A typical production mix for the manufacturing 

system, which must be satisfied within a time horizon 
that ranges between 1100 and 1300 time units, is 
shown in Table 4. 



 

 

Table 4: A typical production mix. 

 

Type Quantity 

A  20 
B  5 
C  30 

 

 

3.1. The Simulation Program 
 

A simulation model that mimics the manufacturing 
system described earlier was built using the FMSLIB 
simulation library [17] which is a generic software 
library written in C that facilitates the simulation of 
manufacturing systems and their real time control 
strategies. FMSLIB employs the three-phase approach 
[18] and provides facilities for modelling the physical 
structure, the part flow and the system and workstation 
loading policy of a family of FMSs. FMSLIB currently 
supports the following simulation entities: 

• parts of different types  
• machines 
• workstations (a group of machines) 
• limited capacity buffers   
• non-accumulating conveyors  
FMSLIB advocates the separate development of the 

conceptually different views of the simulated system. 
This approach facilitates the modular program 
development, program readability and maintainability 
and the evaluation of different strategies (system-level 
control policy, dispatching control, etc) on the same 
system. A simulation program based on FMSLIB is 
comprised of the following modules: 

• Physical Structure (Equipment) - Contains the 
descriptions of the machine, conveyor, buffer 
and workstations that make up the simulated 
system   

• Operational Logic - Contains the descriptions 
of the feeding policies for the machine, 
workstation and conveyors of the simulated 
system i.e. determines the input buffer policy 
for each machine. 

• Input Data - Provides system-related static data 
like the demand and the  machine processing 
times 

• Part path - Describes the part flow through the 
system. This module explicitly describes the 
equipment required by each part type, at each 
stage of its manufacturing process. 

• Data Collection - Defines the user-defined 
parts of the system for which data collection is 
necessary.  

• Control Strategy - Determines the system-level 
scheduling policy to be implemented for the 
control of the system; i.e. it determines which 
part type will be introduced in the system and 
when. In this paper, the control strategy is 
implemented by the neural network which is 
trained using the RL agent.  

The separation of the different views of the 
simulated system advocated by FMSLIB greatly 
facilitated the incorporation of the software that 
implements the RL agent (written in C++) with the 
simulation code.  

 

3.2. Heuristic controller  
 

The manufacturing system described earlier is fed 
by a heuristic controller which determines the time and 
the type of the part to be introduced into the system 
[19]. An important managerial objective of the 
scheduling policy that must be satisfied by any control 
policy for this system is to ensure timely demand 
satisfaction and balanced production rate of the 
required types. This means that ideally the production 
rates of the three types must be constant during 
production. The balanced production requirement is 
necessary because the assembly plant feeds successive 
production stages. In this section we provide a short 
description of the heuristic algorithm without getting 
into details (e.g. the treatment of machine break downs) 
which are of no interest for this work.  

The heuristic algorithm employed for the system 
loading policy consists of two steps: (a) the part types 
that are candidate for loading into the system are 
identified and (b) the type of the part to be loaded in 
the system is decided.  

The type of the part to be loaded into the system is 
the one having the maximum backlog of the cumulative 
entrance from a boosted desired, where the backlog for 
type i is calculated by the expression: 

)()()( teTtdtb iiii −+=   if  
ii Pte <)(  

otherwise  

)()( tetb ii −=  

 where  
• t is the current time, 

iP  is the production 

demand;  
• TPd ii =  is the demand rate (T is the 

planning horizon) for product type i 



• 
iT  is the estimated processing time for for 

product type i; and  

• )(tei  the number of entered parts at time t 

for product type i.  
     
The part types that are candidates for loading into 

the system are those having positive backlogs )(tbi . 

The behavior of the heuristic controller under the 
range of typical planning horizons and for the typical 
production requirements shown in Table 4 is discussed 
next. Simulation results show that the heuristic 
controller achieves very stable production balances 
under a wide range of planning horizons. When the 
planning horizon is sufficiently long, the heuristic 
controller achieves a nearly ideal production mix. For 
example, when the planning horizon is set to 1300 time 
units the heuristic controller produces all the required 
parts of Table 4 following closely the ideal production 
rates. This is shown in Figure 2 which displays the 
actual production achieved by the heuristic algorithm 
(stepwise lines) together with the ideal production rates 
(straight lines).  

However, when the planning horizon is tight, the 
heuristic algorithm produces an extremely balanced 
production mix at the cost of a significantly lower total 
production. For example when the planning horizon is 
set to 1100 time units, the total production for types A, 
B and C is 16, 4 and 24 parts respectively – instead of 
the 20, 5 and 30 parts required. The production rates 
achieved by the heuristic controller for this case are 
extremely balanced throughout the planning horizon as 
it is shown in Figure 3.  
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Figure 2. The production achieved by the 
heuristic controller for a sufficiently long 

planning horizon. 
 

0

5

10

15

20

25

30

35

5
9

1
4
3

2
2
4

2
8
0

3
3
8

3
8
9

4
5
1

4
5
5

5
4
1

5
9
2

6
5
0

7
0
6

7
6
4

8
2
0

9
0
1

9
5
7

1
0
1
5

1
0
7
1

Time

P
a
rt
s
 p
ro
d
u
c
e
d

Type C Type B Type A

 
 

Figure 3. The production achieved by the 
heuristic controller for a tight production 
horizon. 
 

3.3. Scheduling policy objectives 
 

The aim of this research is to develop a RL-based 
controller which under tight planning horizons achieves 
better productivity than the heuristic controller 
generating sub-optimal – but still acceptable – 
production rates.  

The system scheduling policy we consider is 
responsible for deciding the time instances at which a 
part will be input in the manufacturing plant as well as 
the part type. The objective of the scheduling policy is 
to ensure timely demand satisfaction and as balanced 
production rate of the required types as possible. This 
means that ideally the production rates of the three 
types must be constant during production. 

The simulation program that has been developed for 
modeling the dynamics of the manufacturing system is 
supervised by an RL agent that determines the loading 
policy of the simulated plant. The details of the RL 
agent developed are discussed in the next section.  
 

4. The Reinforcement Learning agent 
 

The definition of a reinforcement learning agent 
consists of: 

• a state representation,  
• a reward function, 
• an action selection control policy, and 
• a learning algorithm for estimating the state 

(or action) values.   
 
All these decisions are very important for the 

success of an RL agent.  The above elements of the RL 
agent are described in the following sections. 
 



4.1 State representation 
 

One of the most important decisions when designing 
an RL agent is the representation of the state.  In the 
system described in this paper this is one of the major 
concerns since a complete representation is not 
possible due to the complexity of the problem.  
Therefore we choose to include the following 
information in the state representation:  

• state of machines.  Each machine may be 
found in one of four distinct states: idle, 
working, setup or blocked.   

• state of input buffers.  Buffers are of limited 
capacity.   

• backlogs for each type of production parts.   

Due to the large state space a neural network is used 
for approximating the value function.  Specifically the 
neural network input layer consists of the following 
units: 

• 4 input units are used for each one of the 
machines. Each input unit corresponds to one 
of the possible states (idle, working, setup or 
blocked)  

• 2 units are used for each buffer.  One unit for 
the level of the buffer and a second one which 
turns on when the buffer is full. 

• 10 one-dimensional Radial Basis Function 
Units are used for each production type 
backlog. 

Totally, there are 82 inputs for the input state 
representation.  The backpropagation learning 
algorithm is used for updating the weights of the 
network.   

 

4.2. The reward function  
 

The implicit mapping of the reward functions to 
scheduling policies has to be a monotonic function: 
higher rewards should correspond to better scheduling 
policies. 

Taking into consideration the scheduling policy 
objectives mentioned in a previous section, the reward 
is calculated with the following formula:  
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The formula consists of two scaled terms.  The first 
term of the formula evaluates the balance of the 
production.  At each time τ, the distance of the actual 

production from the ideal production ττ ii dp −)(  is 

calculated for each product and the maximum absolute 
distance is summed for the whole duration of the 
production task.  The result is divided by M, the total 
production time (make span) for the specific episode.  
Note that τ is used for simulation time to distinguish 
from decision epoch (times at which the RL agent takes 
decisions), which is denoted as t.    

 The second term of the formula evaluates the 
timeliness of the production.  T is the planning horizon, 
i.e. the required production should be accomplished 
within this time.  In the ideal case M should be equal to 
T.  

So, the RL agent is punished with the sum of the 
maximum distance between the desired and actual 
amount of production and the distance between the 
total production time and the planning horizon.  In the 
experiments conducted we have chosen the values 

2=balw and 1=timw  for the parameters.  The reward 

is negative and its values generally range in the interval 
[-1,0).   

Simulation steps do not coincide with decision 
epochs of the RL agent, since during the simulations, 
there are states in which there is only one possible 
action (for example, when the input buffer is full the 
only possible action is “do nothing”).  At these states 
the simulation proceeds without consulting the RL 
controller.  However, rewards are still calculated at 
each simulation step and accumulated until the next 
decision epoch.  The total reward accumulated and 
calculated as in the formula above is returned to the 
agent at the end of the episode.   

 

4.3. Actions 
 

The RL agent has to decide between four actions: 
entering a part of type A, B or C or doing nothing.  The 
decision is based on the output of the neural network, 
which is trained during the simulation.  The activation 
function for the 4 output units is a sigmoid function 
translated by -1 to fit in the reward region. 

 

4.4. RL learning algorithm  
 

The RL agent developed employes the Sarsa(λ) 
algorithm.  This decision was justified by a specific 
characteristic of the particular manufacturing system. 
As explained earlier, some actions may be infeasible at 
some time instances of an episode. For example, if the 
entry machine is busy and its input buffer is full, no 
part may be added to the system.   In RL algorithms, 
the updates of the current state-action value estimations 
are based on the estimated values of the next state.  



Sarsa(λ), which is an on-policy algorithm, uses for the 
update the value of the next action followed, whereas 
Q(λ) uses the value of the best next action.  If some 
actions are not possible at the next state (fact which is 
not known to the agent before visiting that state), then 
Q(λ) might wrongly update its estimates by using the 
value of an infeasible action.  Sarsa, on the other hand, 
takes into account the action selection and therefore is 
more suitable to this task. 
 

4.5. RL agent parameter setting  
 

The task of controlling the manufacturing system is 
an episodic task.   Each simulation ends when all 
required products have been produced.  Therefore, the 
discount factor γ is set equal to 1 (rewards are not 
discounted).  Episodes are quite long (more than 1000 
time steps) and the reward is provided to the agent 
once at the end of the long episode. Therefore, a large 
trace decay parameter λ was preferred (0.995), so that 
the reward can be propagated (through the eligibility 
traces) towards the actions taken at the beginning of the 
episode. Past traces decay with a factor tλ  where t is 
the number of time steps.  Figure 4 illustrates the value 
of tλ  for different λ and time steps. Note that for 
λ=0.995 the decay trace falls below the value of 0.005 
after about 1000 time steps. (Correspondingly: λ=0.90, 
50 time steps; λ=0.95, 100 actions; λ=0.99, 500 
actions). 
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Figure 4: 
tλ  for different values of λ in 

logarithmic scale.  
 

Training the agent with randomly chosen weights 
for 40,000 episodes showed that a large value of λ 
(0.995) combined with relatively high alpha value 
(α=0.2) produces the best results.  

The action selection technique used is the ε-greedy 
policy with ε equal to 0.1 (10% of the decisions are 
random) to allow high exploration.  The value of ε is 
decaying after each episode.  

 

4.6 RL agent training  
 

The RL agent was trained to produce the typical 
production mix under a tight planning horizon (1100 
time units). The total production time and the rewards 
explored by the RL agent during its training are shown 
in Figure 5.  

For testing purposes, the behavior of the agent 
during its training was observed by requesting it to 
periodically generate system loading schedules based 
on the knowledge it has gathered up to that point. Thus, 
every 100 episodes, the RL agent is used to control the 
manufacturing system for one testing episode. During 
the testing episode, the upper level scheduling policy of 
the manufacturing system is determined by the RL 
agent. The parameters ε and α are set to zero during the 
testing episodes to disable learning and random 
actions. The behavior of the RL based controller during 
the testing episodes is shown in Figure 6. 

In order to evaluate the balance of the production, 
we display the policy generated by the agent in a  
representative testing episode having a total production 
time of 1150 and reward -0.4 (Figure 7). The ideal 
cumulative productions (shown in the Figure 7 as three 
straight lines, one for each part type) may be compared 
with the production generated by the RL algorithm 
which (shown in the figure as three stepwise functions). 
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Figure 5 : The behavior of the RL agent 

during training:  (a) The total production 
time (b) The combination of reward – total 
production time (c) The reward achieved 

at each training episode. 
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Figure 6. The behavior of the RL agent 

during testing: (a) The total production 
time (b) The combination of reward – total 
production make span (c) The reward 

achieved at each testing episode. 
 



 It can be observed (Figure 7) that the RL agent 
produces a schedule that is sub-optimal in the sense 
that it does not achieve the ideal production for part 
types A and C. However, the production schedule 
generated for the part type A is consistently higher than 
the ideal production, while the production for part type 
C is consistently lower than its corresponding ideal 
production.  The deviation of the actual productivity 
from the ideal one that is noticed in the schedule 
generated by the RL agent is compensated by a 
considerable productivity: for a time horizon equal to 
1100 time units, 19 parts of type A, 4 parts of type B 
and 19 parts of C are produced – instead of the 20, 5 
and 30 parts required. This production is the 95% of 
the required. It is reminded that the heuristic controller 
for the same planning horizon produced 80% of the 
required parts (16 parts of type A, 4 parts of type B and 
24 part of type C). In general, the RL agent produced a 
schedule which has a total production time close to the 
planning horizon while not sacrificing the requirement 
for an acceptable balance.  
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Figure 7. Actual and  ideal cumulative 

production achieved by the RL agent. 

 
 

4.7. Comparison of the RL scheduler to the 

heuristic controller  
 

In this section the performance of the RL scheduler 
is compared to that of a heuristic controller for a range 
of planning horizons. The average reward achieved 
(after training) for each time horizon shown in Table 5.   

It is observed that for planning horizons shorter than 
1300 time steps the heuristic controller fails to respect 
the planning horizon in favor of a completely balanced 
production mix.  On the other hand, the RL agent 
achieves schedules considerably closer to the planning 

horizon (table 5, Figure 9).  Considering the achieved 
reward values, the RL agent supersedes the heuristic 
controller for planning horizons 1100 and 1150 while 
for longer planning horizons, the heuristic controller is 
able to produce much better results (Figure 8). 
 

Table 5. Average rewards and total 
production times for the heuristic 

controller and the RL Agent. 
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1100 1374 -0,59 1150 -0,4 

1150 1398 -0,54 1163 -0,45 

1200 1398 -0,44 1210 -0,47 

1300 1302 -0,16 1290 -0,39 
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Figure 8: The rewards achieved by the 
heuristic controller and the RL agent for 

different values of the planning horizon.  
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Figure 9: The distance of the total 

production time from the planning 
horizon for the Heuristic controller and 
the RL agent for different values of the 

planning horizon. 
 

 

5. Conclusions  
 

RL is an approach that allows an autonomous agent 
to learn through interaction with its environment to 
select the proper actions in order to achieve its goal. 
The approach has been adopted with success in various 
fields and more recently it has been employed to 
address production scheduling problems related to the 
machine-level control of a manufacturing system. In 
this work we employ RL in order to develop a system 
level controller which determines the time and the type 
that a product must be introduced into the 
manufacturing system. The aim of the controller is to 
load product parts into the manufacturing system in 
such a way, that the production is accomplished within 
a time horizon, while the part types produced follow an 
ideal production rate. This is a demanding task and 
although it bears some similarities with research 
reported in the literature, the particular problem has not 
been addressed. Due to the large state space, the value 
function required by the RL agent is approximated by a 
neural network.  Experimental results show that the RL 
agent learns to produce the required production mix 
within the given time horizon while consistently 
approaching the ideal production rates. Furthermore, 
simulation results show that under strict planning 
horizons the RL agent outperforms, in terms of 
productivity, a heuristic controller that has been used to 
control the manufacturing system. In such cases, the 
heuristic controller produces a very close to ideal 
balance production mix but fails to satisfy the 
production requirement. On the contrary, the RL agent 
is able to increase system productivity without 
sacrificing production balance. This may have 
important practical implications in cases where small 
deviations from the ideal production rates are 
acceptable if combined with considerable gains in 
productivity.   
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