
Functional Testing Techniques for Discrete-Event Simulation

EVANGELOS KEHRIS

Department of Business Administration

Technological Educational Institute (T.E.I.) of Serres

Terma Magnisias, 621 24 Serres

GREECE

kehris@teiser.gr

Abstract: - Simulation program testing is an important phase of a simulation study which aims to uncover

errors in the simulation program. This paper presents the adoption of two complementary functional techniques

for the testing of simulation programs that are built on top of discrete-event simulation-specific libraries. The

power of each technique in uncovering imputed errors in the simulation program is demonstrated while it is

shown that the adoption of the techniques requires the extension of the simulation library with new

functionality.

Key-Words: - Simulation, Functional Testing, Equivalence Partitioning, X-Machines

1 Introduction
Computer simulation is a popular approach for the

study of complex systems which requires the

development a simulation program that mimics the

system under study. The simulation program is

based on a conceptual model that describes the

system to be simulated at the required level of

detail. Domain-specific simulators (e.g. [1], [2], [3],

[4]) are user friendly environments that greatly

reduce the effort required for the development of

the conceptual model by representing the simulated

system as data by automating the development of

the corresponding simulation program. It is

therefore clear that if a simulator is used for the

simulation of a system, simulation program testing

is not necessary since it may legitimately be

assumed that the program generation capability of

the simulator has been exhaustively tested by the

simulator developer. Despite the productivity

achieved by the domain-specific simulators,

simulation experts quite often have to develop

simulation code since existing simulators do not

always provide the required functionality. In these

cases, the simulation program is developed either in

a simulation language (e.g. [5], [6], [7]) or in a

general-purpose language using simulation-specific

libraries (e.g. [8], [9], [10]) and is tested in order to

establish that the conceptual model has been

properly transformed to program. Simulation

languages and simulation-specific libraries are well

documented and widely publicized in academic

journals and international conferences. The testing

of the simulation programs developed using these

languages and simulation libraries has not received

the corresponding attention. To some extend this is

illustrated by the fact that in simulation literature

testing is discussed in relation to validation and

verification. Thus, nearly all methodological

simulation papers present validation verification

and testing (VV & T) as necessary activities that

need to take place throughout the simulation

development life cycle and provide a more or less

widely acceptable categorization of VV & T

techniques. It is noticeable that the VV & T

techniques presented are usually presented as a

whole, without distinguish between validation

techniques, verification techniques and testing

techniques. Furthermore, the majority of the

simulation papers that deal VV & T remain at a

general description of existing testing techniques

without describing in depth how to employ these

techniques for the testing simulation programs. As

a result, important issues related to testing

simulation programs such as: the application of

existing testing approaches to simulation or the

required modification/extension of existing

simulation libraries in order to support the various

testing techniques for simulation are not discussed

in the simulation literature.

This paper shows how two complementary testing

techniques (each testing the program at a different

level of abstraction) may be simultaneously applied

for testing simulation programs developed in a

general programming language in combination with

a discrete-event simulation-specific library. A

simple manufacturing facility is used as an example

to demonstrate the application of the testing

approaches in simulation. Sections 2 and 3 describe

the manufacturing facility and its specification

respectively. Section 4 presents the two testing

techniques. Section 5 discusses the implementation

of the testing techniques as well as the way they are

adopted for use in simulation and demonstrates the

power of the techniques in identifying errors

imputed in a simulation program.

Testing is the process of executing a program with

the intent of finding errors [11]. Testing is

generally carried out in two steps. During the first

step, data sets that will be used for the testing are

generated and the expected program output for each

data test is determined. The generated data sets are

called test-cases. The generation of the test-cases is

crucial: effective testing requires careful selection

of appropriate data sets so that the functionality of

the program is satisfactorily tested. During the

second testing step, the program under test is fed

with the data sets and the produced output is

compared with the expected one: any difference

between the simulation-generated output and the

expected output identifies an error in the simulation

program. The second step may also require the

addition of extra code in the program, so that

appropriate description of the behaviour of the

program under test is collected.

Two approaches may be used for the generation of

the test-cases: according to functional (or black-box)

testing techniques [11] base the generation of test-

cased on the specification (i.e. the conceptual

model) of the program under test while white-box

testing techniques examine the internal structure of

the program under test in order to generate the test-

cases. In this paper we study the employment of

two functional techniques for testing the program

that simulates the system described in the section 2.

2 The simulated system
Consider a simple manufacturing facility which

manufactures product parts. Each product part is

uniquely identified by an identification number.

The manufacturing facility consists of buffers

which are storage spaces of limited capacity and

simple machines which carry out the manufacturing

processing. Parts may be added in a buffer only if

there is available space in it, while the parts

removed from a buffer depend on the buffer

discipline.

The parts that are required to be processed by a

machine are placed in a buffer which is called input

buffer, while the parts that have been processed by

the machine are stored in another buffer called

output buffer.

When the machine is idle and there are parts stored

in the input buffer, the machine may start the

processing of a part: The first part p placed in the

input buffer is removed from the input buffer and

the machine starts processing it. Thus, the FIFO

discipline for input buffer is used. The processing

of the part lasts for t time units. If at the completion

of the part processing, the output buffer is not full,

then part p is placed in the output buffer and the

machines either becomes idle or starts processing

another part depending on whether the input buffer

is empty or not. If, however, the output buffer is

full when the machine completes the processing of

a part, the part p may not be removed from the

machine and thus then machine is blocked. The

machine is unblocked when space becomes

available in the output buffer. It is assumed that the

machine does not require setup and does not fail.

3 Simulation system specification
This section describes the specification of the

simulation system described previously. A number

of modelling techniques have been proposed for the

development of conceptual models. Some of them,

such as the Activity Cycle Diagram and Petri-Nets,

are diagrammatic. An evaluation of them may be

found in [12]. Diagrammatic models are quite

popular since they are intuitive and quite easy to

use. Despite these advantages, however,

diagrammatic models provide no support for the

testing stage. In this work the X-machine

formalism has been adopted for the development of

the conceptual models.

X-machines is a specification formalism introduced

by Eilenberg [13], which is capable to model both

the data and the control of a program. Thus, X-

machines employ a diagrammatic approach to

model the control by extending the expressive

power of the Finite State Automata (FSA).

Transitions between states are no more performed

through simple input symbols but through the

application of functions. These functions are

written in a formal notation and model the

processing of the data. Data, on the other hand, is

held in memory, which is attached to the X-

machine. Functions receive input, read the memory

values, and produce output while modifying the

memory values. The conceptual model (developed

as an X-Machine) of the system described above is

presented next.

3.1 X-Machine Buffer specification

The Finite State Automaton that corresponds to the

buffer specification is shown in Figure 1:

Empty

Non Empty

Full

add_part

add_part remove_part

remove_part
become_empty

become_full

Figure 1: The associated finite state automaton for

the Buffer. Initial state: Empty.

The functions add_part and become_full are

responsible for adding a new part into the buffer

while remove_part and become_empty remove a

part stored in the buffer.

The buffer memory is: BM = (PARTS × Capacity)

where PARTS represents the set of the parts

contained in the buffer in a given moment and

Capacity is the maximum number of parts that may

be stored in the buffer.

The X-Machine functions that are shown in the

Finite State Automaton will be specified in detail

using following the notation:

f (inp, mem) = (outp, new_mem) guard

This notation is read as: function f accepts as input

inp and operates on memory mem; if guard is

satisfied then function f changes the memory into

new_mem and produces the output outp.

The Buffer X-Machine functions using the above

notation are defined as follows:

add_part (p, (Parts, Capacity)) =

(part_added, (Parts ∪ p, Capacity)

if p ∉ Parts ∧ card (Parts) < Capacity – 1

become_full (p, (Parts, Capacity)) =

(part_added, (Parts ∪ p, Capacity)

if p ∉ Parts ∧ card (Parts) = Capacity – 1

remove_part (p, (Parts, Capacity)) =

(part_removed, ((part – p), Capacity))

if p ∈ Parts ∧ card (Parts) > 1

become_empty (p, (Parts, Capacity)) =

(part_removed, ((part – p), Capacity))

if p ∈ Parts ∧ card (Parts) = 1

Where:

• p is the part that is going to be added in the

buffer by add_part

• (Parts, Capacity) is the memory of the buffer as

stated earlier

• part_added is the output produced by the

function add_part when it is executed

• card (Parts) is the cardinality of the set Parts.

3.2. Machine specification
The Finite State Automaton that corresponds to the

machine specification is shown in Figure 2.

Idle

end_processingunblock

Working

FinishedBlocked

start

reset

block

Figure 2: The associated finite state automaton for

the Machine. Initial state: Idle.

The machine memory is:

MM = (Time× IN × PROC × OUT × BTime ×

DUR) where

• Time is the current simulation time

• IN is the set of parts contained in the machine’s

input buffer

• PROC is the set of parts currently being

processed by the machine

• OUT is the set of parts currently stored in the

machine’s output buffer

• BTime is the simulation time the machine is

expected to complete its current operation

• DUR is the duration of the operation

The behavior of the machine is described by five

functions:

• start and end_process: which model the

commencement and the completion of a

machine operation respectively,

• reset: which models the fact that a machine just

finished an operation may proceed with another

operation and

• block and unblock: which represent the

blockage of the machine due to full output

buffer and its corresponding availability when

the output buffer may accept another part.

The definition of these functions is given next:

start (check_start, (now, in, nil, out, nil, dur)) =

(proc_starts, (now, (in-p), p, out, now+dur, dur))

if (in ≠ empty ∧ Proc = nil ∧ BTime = nill)

end_processing (end, (now, in, p, out, t, dur)) =

(end_processing, (now, in, p, out, nil, dur))

if (now = t)

reset (out_buf_not_full, (now, in, p, out, nil, dur)) =

(proc_ended, (now, in, nil, out + p, nil, dur))

block (out_buf_full, (now, in, p, out, nil, dur)) =

(machine_blocked, (now, in, p, out, nil, dur))

unblock (out_buf_not_full, (now, in, p, out, nil,

dur)) =

(machine_unblocked, (now, in, nill, out+p, nil, dur))

The complete conceptual model that has been

developed using the X-Machine specification

serves two aims: firstly, it allows the simulation

developer to understand in detail the logic of the

system to be simulated and secondly, it supports the

testing of the simulation program as described next.

4 Test-case generation
In this section two complementary functional

testing techniques may be used for the testing of

simulation entities are presented. The first

functional technique (equivalence partitioning) is

used to test the individual functions of a simulation

program, while the second technique (X-Machine

testing) is used to test the integration of functions.

4.1 Test-case generation based on

equivalence partitioning
In equivalence partitioning valid and invalid

equivalence classes of test data are generated: valid

equivalence classes represent valid values to

variables while invalid equivalence classes

represent erroneous variable values. The

equivalence classes are identified based on the

specification of the functions.

add_part (p, (Parts, Capacity)) =

(part_added, (Parts ∪ p, Capacity)

if p ∉ Parts ∧ card (Parts) < Capacity – 1

According to the guard of the function add_part a

part p that is not currently hold in the buffer (p ∉

parts) may be added in the buffer when the buffer

has more than one empty space (card (parts) <

capacity – 1). A valid test-case that represents this

situation is to add part p2 to a buffer with capacity

5 that holds the part p1. This valid test-case may be

described by the buffer memory together with the

part to be added to the buffer using the notation:

MB = (<p1>, 5), p = p1. Invalid equivalence

classes for the function add_part need also be

derived: one invalid equivalence class represents

the case where a part already stored in the buffer is

attempted to be added again in the buffer. This

invalid equivalence class is represented by the data

set: MB = (<p1>, 5), p = p1; another invalid

equivalence class is when the buffer has not more

than one empty space to hold the part and is

represented by the data set: MB = (<p1, p2>, 2), p

= p3. The valid and invalid equivalence classes for

the functions of the Buffer, together with their

corresponding test-cases are shown in the Table 1.

Function: add_part

valid equivalence classes

p ∉ parts ∧

card (parts) < capacity – 1

MB = (<p1>, 5),

p = p2

invalid equivalence classes

p ∈ parts ∧

card (parts) < capacity – 1

MB = (<p1>, 5),

p = p1

p ∉ parts ∧

 card (parts) > capacity –1

MB = (<p1, p2>, 2),

p = p3

p ∉ parts ∧

 card (parts) = capacity –1

MB = (<p1>, 2),

p = p2

Function: become_full

valid equivalence classes

p ∉ parts ∧

card (parts) = capacity – 1

MB = (<p1>, 2),

p = p2

invalid equivalence classes

p ∈ parts ∧

card (parts) = capacity – 1

MB = (<p1>, 2),

p = p1

p ∉ parts ∧

 card (parts) > capacity –1

MB = (<p1, p2>, 2),

p = p3

p ∉ parts ∧

 card (parts) < capacity –1

MB = (< >, 2),

p = p3

Function: remove_part
valid equivalence classes

p ∈ Parts ∧ card (Parts) > 1 MB = (<p1, p2>, 2),

p = p1

invalid equivalence classes

p ∉ parts ∧

card (parts) > 1

MB = (<p1, p2>, 2),

p = p3

p ∈ parts ∧

card (parts) = 1

MB = (<p1>, 2),

p = p1

p ∈ parts ∧

card (parts) < 1

MB = (<p1>, 3),

p = p1

Function: become_empty
valid equivalence classes

p ∈ Parts ∧ card (Parts) = 1 MB = (<p1>, 2),

p = p1

invalid equivalence classes

p ∉ parts ∧

card (parts) = 1

MB = (<p1>, 2),

p = p3

p ∉ parts ∧

card (parts) = 1

MB = (<p1>, 2),

p = p3

p ∈ parts ∧

card (parts) > 1

MB = (<p1, p2>, 2),

p = p1

Table 1: Test-cases for the Buffer functions

generated by the equivalence partitioning approach.

The functions that represent the Machine

functionality have also been treated in a similar

manner, in order to derive the appropriate test-cases.

In total ten test-cases (three of them being valid and

seven invalid equivalence classes) have been

derived for the Machine.

4.2 Test-case generation based on X-

Machine testing
The X-Machine test-case (XMTC) generation is an

extension of Chow’s W-method [14] and is

presented in detail in [15]. XMTC generation

requires the identification of two sets: the

characterisation set and the state cover set.

Informally, a characterisation set W is a set of input

sequences for which any two distinct states of the

machine are distinguishable. The state cover S is a

set of input sequences such that all states are

reachable by the initial state. For example, for the

buffer, the cover set and the characterisation set are:

S = {e, add_part, add_part ⋅ become_full}

W = {become_empty, ignore_add}

The implementation of the XMTC generation

algorithm (for k = 1) generates 96 test-cases for the

buffer and 108 for the machine. Due to space

limitations, two short extracts of these test-case are

shown next:

Test-case for the Buffer

B1. e:become_empty

B2. e:ignore_add

B3. e:add_part:become_empty

B4. add_part:become_full:ignore_add:become_empty

B5. add_part:become_full:ignore_add:ignore_add

B6. add_part:add_part:become_empty

B7. add_part:become_full:remove_part:add_part:

 become_empty

B8. add_part:become_full:remove_part:add_part:ignore_

 add

B9. add_part::become_full::ignore_add::become_empty

Test-case for the Machine

M1. start:end_process::reset::start

M2. start:end_process:block:unblock::start

M3. start:end_process:reset::end_process

M4. start:end_process::start

5. Test-case implementation and

evaluation
The buffer and the machine described in the

example above, were developed in Java using the

three-phase discrete-event simulation library JSim

developed by M. Pidd [16]. JSim implements the

three-phase approach [17] according to which the

simulation evolves through the execution of two

types of activities: bound to time (B-activities)

which may be scheduled in advance and system-

state dependent activities (C-activities) which are

executed when specific system conditions are met.

Three-phase executives cycle through three phases:

A-phase determines the next simulation time and

forwards the simulation clock to that time, B-phase

executes the B-activities scheduled to be executed

at the current simulation time and C-phase attempts

to execute all the conditional activities.

Initially, the code that implements the Buffer class

was developed in Java (Figure 3)
public class Buffer extends Queue { //Queue is a Vector

 String name;

 int capacity;

Buffer (int c) {

 super();

 name = "unnamed buffer";

 capacity = c;

 }

public boolean isFull () {

 if (capacity == size()) return true;

 else return false;

 }

public boolean remove (Part p) {

 return remove (p);

 }

public boolean add (Part p) {

 if (size() <= capacity - 1 && !contains (p)) {

 addElement(p);

 return true;

 }

 else return false;

}

Figure 3: an extract of the code for Buffer

The class Queue is provided in JSim library and is

an extension of the Java class Vector. It should be

also noted that buffer X-machine functions

add_part and become_full are combined into a

single method (named add) while the functions

remove_part and become_empty are combined into

a single Java method named remove.

Next, the class Machine was implemented in Java

using the JSim facilities. The logic of the B- and C-

activities of the Machine.java is shown in Figure 4:

C-activity: startProcessing

IF the machine is idle AND its input buffer contains

parts THEN

get a part from the machine’s input buffer and place

it in the processing buffer

set machine status to processing

schedule the end of processing for this machine

B-activity: endProcessing

IF the machine is processing THEN

set machine status to finished

find the next buffer for the processed part

IF the next buffer is not full THEN

 move the part from the processing buffer to the

next buffer

 set machine status to idle

ELSE

 set machine status to blocked

C-activity: unblock

IF the machine is blocked THEN

 find the next buffer for the processed part

IF the next buffer is not full THEN

 move the part from the processing buffer to the

next buffer

 set machine status to idle

Figure 4: the logic of the B- and C-activities of the

Machine

In order to test the effectiveness of the test-cases

generated in section 4, a number of errors were

imputed in the code that implemented the Buffer

and the Machine. Then, the test-cases generated in

Section 4 were implemented in JUnit. JUnit is an

open source Java testing framework used to write

and run repeatable tests. The implementation of the

equivalence-partitioning test-cases in JUnit was

straight-forward. For example, test case #4 for the

buffer was implemented as follows (see also Figure

5): Initially a buffer (b) with capacity 2 and three

parts (p1, p2, p3) are constructed. Then all the part

are attempted to be added to the buffer and it is

checked that the buffer contains exactly two parts

(i.e. parts p1 and p2).

public void testAddPartToNonEmptyBuffer2 () {

 b = new Buffer (2);

 p1 = new Part ("Part", 1);

 p2 = new Part ("Part", 2);

 p3 = new Part ("Part", 2);

 b.addPart (p1);

 b.addPart (p2);

 b.addPart (p3);

 assertTrue (b.size() == 2);

 assertTrue (b.contains(p1));

 assertTrue (b.contains(p2));

 assertTrue (!b.contains(p3));

 }

Figure 5: Implementation of the equivalence

partitioning test case #4 for the Buffer in JUnit.

The implementation of the test-cases generated by

X-Machine required a number of extensions to be

introduced in the simulation library. These

extensions where: a) a mechanism that allows the

user to determine the initial simulation phase and b)

a facility to re-initiate the simulation system, so that

simulation runs corresponding to successive test-

cases could be executed in JUnit were developed.

Furthermore, some X-Machine test-cases require

the development of a function (stub) in order to

achieve a desired result. For example, the test-case

M2 requires the development of a function that will

achieve the unblocking of the machine. The tester

has both to develop this stub and to call it at the

appropriate simulation time.

Table 2 shows the errors imputed and the test-case

that identified them: thus, errors identified by the

equivalence partitioning and by the X-Machine

test-cases are shown in the 4
th
 and 5

th
 column of the

table respectively.

N
o
.

M
et

h
o
d

co

n
ta

in
in

g

th
e

er
ro

r

Description of imputed

error

Id
en

ti
fi

ed
 b

y
 E

P
T

Id
en

ti
fi

ed
 b

y
 X

M
T

ERRORS IMPUTED IN BUFFER

1 Remove

Part

Removing a part decreases

buffer’s capacity by one
--

�

2 AddPart Adding a part increases

buffer’s capacity by one

�

�

3 AddPart A part already stored in

the buffer is allowed to be

added in it again

�

--

4 AddPart No part is added to the

buffer

�

�

ERRORS IMPUTED IN MACHINE

1 start start could be called even

if machine was not idle

�

--

2 start The part to be processed

was not removed from

the machine’s input

buffer

�

�

3 start The end of processing

was not scheduled
--

�

4 start The machine’s state was

not changed to processing

�

�

5

end Machine status is not

changed to idle at

successful completion of

the processing

�

�

6 end Machine status is not

changed to blocked when

blockage occurs

�

�

7 Unblock Part is not placed in the

proper next buffer

�

�

Table 2: The errors imputed in the Buffer and

Machine code and the test-cases that identified

them.

6 Discussion

The combined application of the presented

functional testing techniques, as suggested for

example in [18], uncovered all the errors imputed

in the simulation code. Each functional technique

achieved to uncover different types of errors. Thus,

the equivalence partitioning test-cases was capable

of identifying errors that violated function-level

logic. For example, the addition of a part in a buffer

that already stores that part (the third error imputed

in the Buffer) is detected by the second invalid test-

cases of the functions add_part and become_full of

the buffer. Errors of this type usually have

immediate effects that become obvious during the

execution of a single function. X-Machine test-

cases, on the other hand, are more suited in

uncovering errors that violate system-level logic.

The erroneous modification of a memory value, for

example, without any other immediately obvious

symptoms, is such a type of error that may go

undetected for long execution time after its

commission. The presence of those errors is

identified during the execution of another function

which utilises the incorrectly set memory value.

The decrease of the buffer’s capacity by one during

the removal of a part from the buffer (the first error

imputed in the Buffer) is an error that may be

identified by the X-Machine test-case: add_part

remove_part add_part become_empty when applied

on a buffer with capacity two, since at the second

call of add_part, the buffer will be found full given

that its capacity will have been reduced to one

during the execution of become_empty.

The importance of employing good programming

practices should also be stressed. For example, the

first error imputed in the Buffer, could be identified

by the java compiler if the buffer capacity had been

declared as final. In addition, the extent to which

the system state is checked through assertions is

also a point of concern. For example, the first error

imputed in the Buffer might have been identified

had the assertTrue (b.getCapacity() == 2) been

included in the assertions.

It is interesting to note that none of the two

functional techniques has the power to identify all

the imputed errors, thus a combination of

techniques as suggested for example in [18] seems

to be the most efficient approach.

The employment of testing frameworks greatly

facilitates the implementation of the testing

techniques and reduces programmers’ time and

effort: test-case generation, test-case development

and testing itself may become quite time-

consuming activities if not supported by the

appropriate software.

Acknowledgment
The Project is co-funded by the European Social

Fund and National Resources - (EPEAEK-II)

ARHIMIDES.

References

[1] Rohrer, M. 1999. “Automod product suite

tutorial”, Proc. of the 1999 Winter

Simulation Conference, Ed. P.A. Farrington,

H.B. Nembhard, D.T. Sturrock, G.W. Evans.,

pp. 220-226.

[2] Price, R. N. and Harrell, C.R.. 1999.

“Simulation modelling and optimisation

using Promodel”, Proc. of the 1999 Winter

Simulation Conference, Ed. P.A. Farrington,

H.B. Nembhard, D.T. Sturrock, G.W. Evans.

pp. 208-214

[3] Sadowski, D. and Bapat, V. 1999. “The

Arena product family: enterprise modelling

solutions”, Proc. of the 1999 Winter

Simulation Conference, Ed. P.A. Farrington,

H.B. Nembhard, D.T. Sturrock, G.W. Evans.

pp. 159-166.

[4] O’Reilly. JJ and Lilegdon, W.R. 1999.

“Introduction to FACTOR/AIM”, Proc. of

the 1999 Winter Simulation Conference, Ed.

P.A. Farrington, H.B. Nembhard, D.T.

Sturrock, G.W. Evans. pp. 201-207.

[5] P.J. Kiviat, R. Villanueva, H.M. Markowitz,

The SIMSCRIPT II Programming Language,

Prentice-Hall, New Jersey, 1968

[6] A. T. Clementson, ECSL – Extendd Control

and Siumulation Users Manual, CLE.COM

Ltd Birmingham, England, 1985.

[7] G. M. Birtwhistle, O.J. Dahl, B. Myhrhaug,

K Nygaard, SIMULA Begin, 2
nd

 edition, Von

Nostrand Reinhold, NY, 1979.

[8] Miller, J.A., Y. Ge and J. Tao. 1998.

Component-Based Simulation Environments:

JSIM as a Case Study Using Java Beans, In:

Proceedings of the 1998 Winter Simulation

Conference, ed. D. Medeiros, E. Watson, J.

Carson, and M. Manivannan, 373-381,

Washington, DC, 13-16 December.

[9] R.A. Kilgore, Object-oriented simulation

with SML and SILK in .NET and Java, In:

Proceedings of the 2003 Winter Simulation

Conference, ed. S. Chick, P.J. Sanchez, D.

Ferrin and D. J. Morrice, p. 218 – 224.

[10] Howell, F. and R. McNab. 1998. Simjava: A

Discrete Event Simulation Package for Java

with Applications in Computer Systems

Modelling, In: Proceedings of the First

International Conference on Web-Based

Modeling and Simulation, San Diego, CA,

January.

[11] G. J. Myers, The art of software testing,

Wiley, 1979.

[12] Page E., Simulation modelling methodology:

principles and etiology of decision support,

PhD Thesis, Dept. of Computer Science,

Virginia Polytechnic Institute, 1994.

[13] Eilenberg S., Automata Machines and

Languages, Vol. A, Academic Press, 1974.

[14] Chow T.S., “Testing Software

DesignModeled by Finite-State Machines,”

IEEE Transactions on Software Engineering,

Vol.SE-4, No.3, 1978, pp.178-187.

[15] Ipate F. and Holcombe M., “Specification

and testing using generalised machines: a

presentation and a case study”, Software

Testing, Verification and Reliability, Vol.8,

1998, pp. 61-81.

[16] M. Pidd, Using Java to Develop Discrete

Event Simulation”, J. Opl. Res. Soc.

[17] Tocher K., The Art of Simulation, Van

Nostrand Company, Princeton NJ, 1963.

[18] F. Ipate, 2004, Complete Deterministic

Stream X–Machine Testing, Formal Aspects

of Computing, 16, p. 374 – 386.

