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Abstract: - Simulation program testing is an important phase of a simulation study which aims to uncover 

errors in the simulation program. This paper presents the adoption of two complementary functional techniques 

for the testing of simulation programs that are built on top of discrete-event simulation-specific libraries. The 

power of each technique in uncovering imputed errors in the simulation program is demonstrated while it is 

shown that the adoption of the techniques requires the extension of the simulation library with new 

functionality.   
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1   Introduction 
Computer simulation is a popular approach for the 

study of complex systems which requires the 

development a simulation program that mimics the 

system under study. The simulation program is 

based on a conceptual model that describes the 

system to be simulated at the required level of 

detail. Domain-specific simulators (e.g. [1], [2], [3], 

[4]) are user friendly environments that greatly 

reduce the effort required for the development of 

the conceptual model by representing the simulated 

system as data by automating the development of 

the corresponding simulation program. It is 

therefore clear that if a simulator is used for the 

simulation of a system, simulation program testing 

is not necessary since it may legitimately be 

assumed that the program generation capability of 

the simulator has been exhaustively tested by the 

simulator developer. Despite the productivity 

achieved by the domain-specific simulators, 

simulation experts quite often have to develop 

simulation code since existing simulators do not 

always provide the required functionality. In these 

cases, the simulation program is developed either in 

a simulation language (e.g. [5], [6], [7]) or in a 

general-purpose language using simulation-specific 

libraries (e.g. [8], [9], [10]) and is tested in order to 

establish that the conceptual model has been 

properly transformed to program. Simulation 

languages and simulation-specific libraries are well 

documented and widely publicized in academic 

journals and international conferences. The testing 

of the simulation programs developed using these 

languages and simulation libraries has not received 

the corresponding attention. To some extend this is 

illustrated by the fact that in simulation literature 

testing is discussed in relation to validation and 

verification. Thus, nearly all methodological 

simulation papers present validation verification 

and testing (VV & T) as necessary activities that 

need to take place throughout the simulation 

development life cycle and provide a more or less 

widely acceptable categorization of VV & T 

techniques. It is noticeable that the VV & T 

techniques presented are usually presented as a 

whole, without distinguish between validation 

techniques, verification techniques and testing 

techniques. Furthermore, the majority of the 

simulation papers that deal VV & T remain at a 

general description of existing testing techniques 

without describing in depth how to employ these 

techniques for the testing simulation programs. As 

a result, important issues related to testing 

simulation programs such as: the application of 

existing testing approaches to simulation or the 

required modification/extension of existing 

simulation libraries in order to support the various 

testing techniques for simulation are not discussed 

in the simulation literature.  

 

This paper shows how two complementary testing 

techniques (each testing the program at a different 

level of abstraction) may be simultaneously applied 

for testing simulation programs developed in a 

general programming language in combination with 

a discrete-event simulation-specific library. A 

simple manufacturing facility is used as an example 

to demonstrate the application of the testing 

approaches in simulation. Sections 2 and 3 describe 

the manufacturing facility and its specification 

respectively. Section 4 presents the two testing 



techniques. Section 5 discusses the implementation 

of the testing techniques as well as the way they are 

adopted for use in simulation and demonstrates the 

power of the techniques in identifying errors 

imputed in a simulation program. 

 

Testing is the process of executing a program with 

the intent of finding errors [11]. Testing is 

generally carried out in two steps. During the first 

step, data sets that will be used for the testing are 

generated and the expected program output for each 

data test is determined. The generated data sets are 

called test-cases. The generation of the test-cases is 

crucial: effective testing requires careful selection 

of appropriate data sets so that the functionality of 

the program is satisfactorily tested. During the 

second testing step, the program under test is fed 

with the data sets and the produced output is 

compared with the expected one: any difference 

between the simulation-generated output and the 

expected output identifies an error in the simulation 

program. The second step may also require the 

addition of extra code in the program, so that 

appropriate description of the behaviour of the 

program under test is collected.  

 

Two approaches may be used for the generation of 

the test-cases: according to functional (or black-box) 

testing techniques [11] base the generation of test-

cased on the specification (i.e. the conceptual 

model) of the program under test while white-box 

testing techniques examine the internal structure of 

the program under test in order to generate the test-

cases. In this paper we study the employment of 

two functional techniques for testing the program 

that simulates the system described in the section 2.  

 

 

2   The simulated system  
Consider a simple manufacturing facility which 

manufactures product parts. Each product part is 

uniquely identified by an identification number. 

The manufacturing facility consists of buffers 

which are storage spaces of limited capacity and 

simple machines which carry out the manufacturing 

processing. Parts may be added in a buffer only if 

there is available space in it, while the parts 

removed from a buffer depend on the buffer 

discipline.  

 

The parts that are required to be processed by a 

machine are placed in a buffer which is called input 

buffer, while the parts that have been processed by 

the machine are stored in another buffer called 

output buffer.  

 

When the machine is idle and there are parts stored 

in the input buffer, the machine may start the 

processing of a part: The first part p placed in the 

input buffer is removed from the input buffer and 

the machine starts processing it. Thus, the FIFO 

discipline for input buffer is used. The processing 

of the part lasts for t time units. If at the completion 

of the part processing, the output buffer is not full, 

then part p is placed in the output buffer and the 

machines either becomes idle or starts processing 

another part depending on whether the input buffer 

is empty or not. If, however, the output buffer is 

full when the machine completes the processing of 

a part, the part p may not be removed from the 

machine and thus then machine is blocked. The 

machine is unblocked when space becomes 

available in the output buffer. It is assumed that the 

machine does not require setup and does not fail.  

 

 

3   Simulation system specification  
This section describes the specification of the 

simulation system described previously. A number 

of modelling techniques have been proposed for the 

development of conceptual models. Some of them, 

such as the Activity Cycle Diagram and Petri-Nets, 

are diagrammatic. An evaluation of them may be 

found in [12]. Diagrammatic models are quite 

popular since they are intuitive and quite easy to 

use. Despite these advantages, however, 

diagrammatic models provide no support for the 

testing stage. In this work the X-machine 

formalism has been adopted for the development of 

the conceptual models.  

 

X-machines is a specification formalism introduced 

by Eilenberg [13], which is capable to model both 

the data and the control of a program. Thus, X-

machines employ a diagrammatic approach to 

model the control by extending the expressive 

power of the Finite State Automata (FSA). 

Transitions between states are no more performed 

through simple input symbols but through the 

application of functions. These functions are 

written in a formal notation and model the 

processing of the data. Data, on the other hand, is 

held in memory, which is attached to the X-

machine. Functions receive input, read the memory 

values, and produce output while modifying the 

memory values. The conceptual model (developed 



as an X-Machine) of the system described above is 

presented next.  

 

3.1   X-Machine Buffer specification 

The Finite State Automaton that corresponds to the 

buffer specification is shown in Figure 1: 

Empty

Non Empty

Full

add_part

add_part remove_part

remove_part
become_empty

become_full

 
Figure 1: The associated finite state automaton for 

the Buffer. Initial state: Empty. 

 

The functions add_part and become_full are 

responsible for adding a new part into the buffer 

while remove_part and become_empty remove a 

part stored in the buffer.  

 

The buffer memory is: BM =  (PARTS × Capacity) 

where PARTS represents the set of the parts 

contained in the buffer in a given moment and 

Capacity is the maximum number of parts that may 

be stored in the buffer.  

 

The X-Machine functions that are shown in the 

Finite State Automaton will be specified in detail 

using following the notation: 

 

f (inp, mem) = (outp, new_mem) guard 

 

This notation is read as: function f accepts as input 

inp and operates on memory mem; if guard is 

satisfied then function f changes the memory into 

new_mem and produces the output outp. 

 

The Buffer X-Machine functions using the above 

notation are defined as follows: 

  

add_part (p, (Parts, Capacity)) =  

(part_added, (Parts ∪ p, Capacity) 

if p ∉ Parts ∧ card (Parts) < Capacity – 1 

become_full (p, (Parts, Capacity)) =  

(part_added, (Parts ∪ p, Capacity) 

if p ∉ Parts ∧ card (Parts) = Capacity – 1   

remove_part (p, (Parts, Capacity)) =  

(part_removed, ((part – p), Capacity))  

if p ∈ Parts ∧ card (Parts) > 1 

 

become_empty (p, (Parts, Capacity)) =  

(part_removed, ((part – p), Capacity))  

if p ∈ Parts ∧ card (Parts) = 1 

 

Where: 

• p is the part that is going to be added in the 

buffer by add_part 

• (Parts, Capacity) is the memory of the buffer as 

stated earlier 

• part_added is the output produced by the 

function add_part when it is executed 

• card (Parts) is the cardinality of the set Parts.  

 

 

3.2. Machine specification 
The Finite State Automaton that corresponds to the 

machine specification is shown in Figure 2. 
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Figure 2: The associated finite state automaton for 

the Machine. Initial state: Idle.  

 

The machine memory is: 

MM = (Time× IN × PROC × OUT × BTime × 

DUR) where  

• Time is the current simulation time 

• IN is the set of parts contained in the machine’s 

input buffer 

• PROC is the set of parts currently being 

processed by the machine 

• OUT is the set of parts currently stored in the 

machine’s output buffer 

• BTime is the simulation time the machine is 

expected to complete its current operation 

• DUR is the duration of the operation  

 

The behavior of the machine is described by five 

functions:  

• start and end_process: which model the 

commencement and the completion of a 

machine operation respectively,  

• reset: which models the fact that a machine just 

finished an operation may proceed with another 

operation and  

• block and unblock: which represent the 

blockage of the machine due to full output 

buffer and its corresponding availability when 

the output buffer may accept another part.  



 

The definition of these functions is given next: 

 

start (check_start, (now, in, nil, out, nil, dur) ) =  

(proc_starts, (now, (in-p), p, out, now+dur, dur))  

if (in ≠ empty ∧ Proc = nil ∧ BTime =  nill) 

 

end_processing (end, (now, in, p, out, t, dur)) = 

(end_processing, (now, in, p, out, nil, dur)) 

if (now = t) 

 

reset (out_buf_not_full, (now, in, p, out, nil, dur)) = 

(proc_ended, (now, in, nil, out + p, nil, dur)) 

 

block (out_buf_full, (now, in, p, out, nil, dur)) = 

(machine_blocked, (now, in, p, out, nil, dur)) 

 

unblock (out_buf_not_full, (now, in, p, out, nil, 

dur)) = 

(machine_unblocked, (now, in, nill, out+p, nil, dur)) 

 

The complete conceptual model that has been 

developed using the X-Machine specification 

serves two aims: firstly, it allows the simulation 

developer to understand in detail the logic of the 

system to be simulated and secondly, it supports the 

testing of the simulation program as described next.  

 

4   Test-case generation 
In this section two complementary functional 

testing techniques may be used for the testing of 

simulation entities are presented. The first 

functional technique (equivalence partitioning) is 

used to test the individual functions of a simulation 

program, while the second technique (X-Machine 

testing) is used to test the integration of functions.  

 

 

4.1   Test-case generation based on 

equivalence partitioning 
In equivalence partitioning valid and invalid 

equivalence classes of test data are generated: valid 

equivalence classes represent valid values to 

variables while invalid equivalence classes 

represent erroneous variable values. The 

equivalence classes are identified based on the 

specification of the functions.  

 

add_part (p, (Parts, Capacity)) =  

(part_added, (Parts ∪ p, Capacity) 

if p ∉ Parts ∧ card (Parts) < Capacity – 1 

 

According to the guard of the function add_part a 

part p that is not currently hold in the buffer (p ∉ 

parts) may be added in the buffer when the buffer 

has more than one empty space (card (parts) < 

capacity – 1). A valid test-case that represents this 

situation is to add part p2 to a buffer with capacity 

5 that holds the part p1. This valid test-case may be 

described by the buffer memory together with the 

part to be added to the buffer using the notation: 

MB = (<p1>, 5), p = p1. Invalid equivalence 

classes for the function add_part need also be 

derived: one invalid equivalence class represents 

the case where a part already stored in the buffer is 

attempted to be added again in the buffer. This 

invalid equivalence class is represented by the data 

set: MB = (<p1>, 5),  p = p1; another invalid 

equivalence class is when the buffer has not more 

than one empty space to hold the part and is 

represented by the data set: MB = (<p1, p2>, 2),  p  

= p3. The valid and invalid equivalence classes for 

the functions of the Buffer, together with their 

corresponding test-cases are shown in the Table 1.  
 

Function: add_part 

valid equivalence classes  

p ∉ parts ∧  

card (parts) < capacity – 1  

MB = (<p1>, 5),  

p = p2 

invalid equivalence classes 

p ∈ parts ∧  

card (parts)  < capacity – 1    

MB = (<p1>, 5),  

p = p1 

p ∉ parts ∧ 

 card (parts)  >  capacity –1 

MB = (<p1, p2>, 2),  

p  = p3 

p ∉ parts ∧ 

 card (parts)  =  capacity –1 

MB = (<p1>, 2), 

p = p2 

Function: become_full  

valid equivalence classes  

p ∉ parts ∧  

card (parts) =  capacity – 1  

MB = (<p1>, 2),  

p = p2 

invalid equivalence classes 

p ∈ parts ∧  

card (parts)  = capacity – 1    

MB = (<p1>, 2),  

p = p1 

p ∉ parts ∧ 

 card (parts)  >  capacity –1 

MB = (<p1, p2>, 2),  

p  = p3 

p ∉ parts ∧ 

 card (parts)  <  capacity –1 

MB = (< >, 2), 

p = p3 

Function: remove_part   
valid equivalence classes  

p ∈ Parts ∧ card (Parts) > 1 MB = (<p1, p2>, 2),  

p = p1 

invalid equivalence classes 

p ∉ parts ∧ 

card (parts)  >  1 

MB = (<p1, p2>, 2),  

p  = p3 

p ∈ parts ∧  

card (parts)  = 1    

MB = (<p1>, 2), 

p = p1 

p ∈ parts ∧  

card (parts)  < 1    

MB = (<p1>, 3), 

p = p1 

 

 



Function: become_empty  
valid equivalence classes  

p ∈ Parts ∧ card (Parts) = 1 MB = (<p1>, 2),  

p = p1 

invalid equivalence classes 

p ∉ parts ∧ 

card (parts)  =  1 

MB = (<p1>, 2),  

p  = p3 

p ∉ parts ∧ 

card (parts)  =  1 

MB = (<p1>, 2),  

p  = p3 

p ∈ parts ∧  

card (parts)  >  1    

MB = (<p1, p2>, 2), 

p = p1 

Table 1: Test-cases for the Buffer functions 

generated by the equivalence partitioning approach.  

 

The functions that represent the Machine 

functionality have also been treated in a similar 

manner, in order to derive the appropriate test-cases. 

In total ten test-cases (three of them being valid and 

seven invalid equivalence classes) have been 

derived for the Machine.  

 

 

4.2   Test-case generation based on X-

Machine testing 
The X-Machine test-case (XMTC) generation is an 

extension of Chow’s W-method [14] and is 

presented in detail in [15]. XMTC generation 

requires the identification of two sets: the 

characterisation set and the state cover set. 

Informally, a characterisation set W is a set of input 

sequences for which any two distinct states of the 

machine are distinguishable. The state cover S is a 

set of input sequences such that all states are 

reachable by the initial state. For example, for the 

buffer, the cover set and the characterisation set are: 

 
S = {e, add_part, add_part ⋅ become_full} 

W = {become_empty, ignore_add} 

 

The implementation of the XMTC generation 

algorithm (for k = 1) generates 96 test-cases for the 

buffer and 108 for the machine. Due to space 

limitations, two short extracts of these test-case are 

shown next:  

 
Test-case for the Buffer 

B1. e:become_empty 

B2. e:ignore_add 

B3. e:add_part:become_empty 

B4. add_part:become_full:ignore_add:become_empty 

B5. add_part:become_full:ignore_add:ignore_add 

B6. add_part:add_part:become_empty 

B7. add_part:become_full:remove_part:add_part: 

       become_empty 

B8. add_part:become_full:remove_part:add_part:ignore_ 

      add 

B9. add_part::become_full::ignore_add::become_empty 

 

Test-case for the Machine 

M1. start:end_process::reset::start  

M2. start:end_process:block:unblock::start  

M3. start:end_process:reset::end_process 

M4. start:end_process::start 

 

 

5. Test-case implementation and 

evaluation 
The buffer and the machine described in the 

example above, were developed in Java using the 

three-phase discrete-event simulation library JSim 

developed by M. Pidd [16]. JSim implements the 

three-phase approach [17] according to which the 

simulation evolves through the execution of two 

types of activities: bound to time (B-activities) 

which may be scheduled in advance and system-

state dependent activities (C-activities) which are 

executed when specific system conditions are met. 

Three-phase executives cycle through three phases: 

A-phase determines the next simulation time and 

forwards the simulation clock to that time, B-phase 

executes  the B-activities scheduled to be executed 

at the current simulation time and C-phase attempts 

to execute all the conditional activities.  

 

Initially, the code that implements the Buffer class 

was developed in Java (Figure 3) 
public class Buffer extends Queue  { //Queue is a Vector 

    String name;    

    int capacity;   

 

Buffer (int c) { 

 super( ); 

 name = "unnamed buffer"; 

 capacity = c; 

 } 

 

public boolean isFull ( ) { 

 if (capacity == size()) return true; 

 else return false; 

 } 

 

public boolean remove (Part p) { 

 return remove (p); 

 } 

 

public boolean add (Part p) { 

 if (size( ) <= capacity - 1 && !contains (p)) {  

  addElement(p); 

  return true; 

 } 

 else return false; 

} 

Figure 3: an extract of the code for Buffer 



 

The class Queue is provided in JSim library and is 

an extension of the Java class Vector. It should be 

also noted that buffer X-machine functions 

add_part and become_full are combined into a 

single method (named add) while the functions 

remove_part and become_empty are combined into 

a single Java method named remove.  

 

Next, the class Machine was implemented in Java 

using the JSim facilities. The logic of the B- and C- 

activities of the Machine.java is shown in Figure 4: 
 

C-activity: startProcessing  

IF the machine is idle AND its input buffer contains 

parts THEN 

get a part from the machine’s input buffer and place 

it in the processing buffer  

set machine status to processing 

schedule the end of processing for this machine 

 

B-activity: endProcessing  

IF the machine is processing THEN 

set machine status to finished 

find the next buffer for the processed part 

IF the next buffer is not full THEN 

 move the part from the processing buffer to the 

next buffer 

 set machine status to idle 

ELSE 

 set machine status to blocked 

 

C-activity: unblock  

IF the machine is blocked THEN 

 find the next buffer for the processed part 

IF the next buffer is not full THEN 

 move the part from the processing buffer to the 

next buffer 

 set machine status to idle 

 

Figure 4: the logic of the B- and C-activities of the 

Machine 
 

In order to test the effectiveness of the test-cases 

generated in section 4, a number of errors were 

imputed in the code that implemented the Buffer 

and the Machine. Then, the test-cases generated in 

Section 4 were implemented in JUnit. JUnit is an 

open source Java testing framework used to write 

and run repeatable tests. The implementation of the 

equivalence-partitioning test-cases in JUnit was 

straight-forward. For example, test case #4 for the 

buffer was implemented as follows (see also Figure 

5): Initially a buffer (b) with capacity 2 and three 

parts (p1, p2, p3) are constructed. Then all the part 

are attempted to be added to the buffer and it is 

checked that the buffer contains exactly two parts 

(i.e. parts p1 and p2).  

public void testAddPartToNonEmptyBuffer2 ( ) { 

 b = new Buffer (2);  

 p1 = new Part ("Part", 1); 

 p2 = new Part ("Part", 2); 

 p3 = new Part ("Part", 2); 

 b.addPart (p1);  

 b.addPart (p2); 

 b.addPart (p3); 

 assertTrue (b.size( ) == 2); 

 assertTrue (b.contains(p1)); 

 assertTrue (b.contains(p2)); 

 assertTrue (!b.contains(p3)); 

  } 

Figure 5: Implementation of the equivalence 

partitioning test case #4 for the Buffer in JUnit.  

 

The implementation of the test-cases generated by 

X-Machine required a number of extensions to be 

introduced in the simulation library. These 

extensions where: a) a mechanism that allows the 

user to determine the initial simulation phase and b) 

a facility to re-initiate the simulation system, so that 

simulation runs corresponding to successive test-

cases could be executed in JUnit were developed. 

Furthermore, some X-Machine test-cases require 

the development of a function (stub) in order to 

achieve a desired result. For example, the test-case 

M2 requires the development of a function that will 

achieve the unblocking of the machine. The tester 

has both to develop this stub and to call it at the 

appropriate simulation time.  

 

Table 2 shows the errors imputed and the test-case 

that identified them: thus, errors identified by the 

equivalence partitioning and by the X-Machine 

test-cases are shown in the 4
th
 and 5

th
 column of the 

table respectively.  
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ERRORS IMPUTED IN BUFFER 

1 Remove 

Part 

Removing a part decreases 

buffer’s capacity by one 
-- 

� 
 

2 AddPart Adding a part increases 

buffer’s capacity by one  

� 
 

� 
 

3 AddPart  A part already stored in 

the buffer is allowed to be 

added in it again  

� 
 

-- 

4 AddPart No part is added to the 

buffer 

� 
 

� 



ERRORS IMPUTED IN MACHINE 

1 start start could be called even 

if machine was not idle 
 
� 

-- 

2 start The part to be processed 

was not removed from 

the machine’s input 

buffer 

� 
 

� 
 

3 start The end of processing 

was not scheduled 
-- 

� 
 

4 start The machine’s state was 

not changed to processing 

� 
 

� 

5

  

end Machine status is not 

changed to idle at 

successful completion of 

the processing 

� 
 

� 

6 end Machine status is not 

changed to blocked when 

blockage occurs 

� 
 

� 
 

7 Unblock Part is not placed in the 

proper next buffer 

� 
 

� 
 

Table 2: The errors imputed in the Buffer and 

Machine code and the test-cases that identified 

them.  

 

6    Discussion  
 

The combined application of the presented 

functional testing techniques, as suggested for 

example in [18], uncovered all the errors imputed 

in the simulation code. Each functional technique 

achieved to uncover different types of errors. Thus, 

the equivalence partitioning test-cases was capable 

of identifying errors that violated function-level 

logic. For example, the addition of a part in a buffer 

that already stores that part (the third error imputed 

in the Buffer) is detected by the second invalid test-

cases of the functions add_part and become_full of 

the buffer. Errors of this type usually have 

immediate effects that become obvious during the 

execution of a single function. X-Machine test-

cases, on the other hand, are more suited in 

uncovering errors that violate system-level logic. 

The erroneous modification of a memory value, for 

example, without any other immediately obvious 

symptoms, is such a type of error that may go 

undetected for long execution time after its 

commission. The presence of those errors is 

identified during the execution of another function 

which utilises the incorrectly set memory value. 

The decrease of the buffer’s capacity by one during 

the removal of a part from the buffer (the first error 

imputed in the Buffer) is an error that may be 

identified by the X-Machine test-case: add_part 

remove_part add_part become_empty when applied 

on a buffer with capacity two, since at the second 

call of add_part, the buffer will be found full given 

that its capacity will have been reduced to one 

during the execution of become_empty.  

 

The importance of employing good programming 

practices should also be stressed. For example, the 

first error imputed in the Buffer, could be identified 

by the java compiler if the buffer capacity had been 

declared as final. In addition, the extent to which 

the system state is checked through assertions is 

also a point of concern. For example, the first error 

imputed in the Buffer might have been identified 

had the assertTrue (b.getCapacity( ) == 2) been 

included in the assertions.  

 

It is interesting to note that none of the two 

functional techniques has the power to identify all 

the imputed errors, thus a combination of 

techniques as suggested for example in [18] seems 

to be the most efficient approach.  

 

The employment of testing frameworks greatly 

facilitates the implementation of the testing 

techniques and reduces programmers’ time and 

effort: test-case generation, test-case development 

and testing itself may become quite time-

consuming activities if not supported by the 

appropriate software.  

 

 

Acknowledgment 
The Project is co-funded by the European Social 

Fund and National Resources - (EPEAEK-II) 

ARHIMIDES.  

 

References 

[1]  Rohrer, M. 1999. “Automod product suite 

tutorial”, Proc. of the 1999 Winter 

Simulation Conference, Ed. P.A. Farrington, 

H.B. Nembhard, D.T. Sturrock, G.W. Evans., 

pp. 220-226. 

 

[2]  Price, R. N. and Harrell, C.R.. 1999. 

“Simulation modelling and optimisation 

using Promodel”, Proc. of the 1999 Winter 

Simulation Conference, Ed. P.A. Farrington, 

H.B. Nembhard, D.T. Sturrock, G.W. Evans. 

pp. 208-214 

 

[3]  Sadowski, D. and Bapat, V. 1999. “The 

Arena product family: enterprise modelling 

solutions”, Proc. of the 1999 Winter 

Simulation Conference, Ed. P.A. Farrington, 

H.B. Nembhard, D.T. Sturrock, G.W. Evans. 

pp. 159-166. 

 



[4]  O’Reilly. JJ and  Lilegdon, W.R. 1999. 

“Introduction to FACTOR/AIM”, Proc. of 

the 1999 Winter Simulation Conference, Ed. 

P.A. Farrington, H.B. Nembhard, D.T. 

Sturrock, G.W. Evans. pp. 201-207. 

 

[5] P.J. Kiviat, R. Villanueva, H.M. Markowitz, 

The SIMSCRIPT II Programming Language, 

Prentice-Hall, New Jersey, 1968 

 

[6] A. T. Clementson, ECSL – Extendd Control 

and Siumulation  Users Manual, CLE.COM 

Ltd Birmingham, England, 1985. 

 

[7]  G. M. Birtwhistle, O.J. Dahl, B. Myhrhaug, 

K Nygaard, SIMULA Begin, 2
nd

 edition, Von 

Nostrand Reinhold, NY, 1979.  

 

[8]  Miller, J.A., Y. Ge and J. Tao. 1998. 

Component-Based Simulation Environments: 

JSIM as a Case Study Using Java Beans, In: 

Proceedings of the 1998 Winter Simulation 

Conference, ed. D. Medeiros, E. Watson, J. 

Carson, and M. Manivannan, 373-381, 

Washington, DC, 13-16 December. 

 

[9]  R.A. Kilgore, Object-oriented simulation 

with SML and SILK in .NET and Java, In: 

Proceedings of the 2003 Winter Simulation 

Conference, ed. S. Chick, P.J. Sanchez, D. 

Ferrin and D. J. Morrice, p. 218 – 224.  

 

[10]  Howell, F. and R. McNab. 1998. Simjava: A 

Discrete Event Simulation Package for Java 

with Applications in Computer Systems 

Modelling, In: Proceedings of the First 

International Conference on Web-Based 

Modeling and Simulation, San Diego, CA, 

January. 

 

[11]  G. J. Myers, The art of software testing, 

Wiley, 1979. 

 

[12]  Page E., Simulation modelling methodology: 

principles and etiology of decision support, 

PhD Thesis, Dept. of Computer Science, 

Virginia Polytechnic Institute, 1994. 

 

[13] Eilenberg S., Automata Machines and 

Languages, Vol. A, Academic Press, 1974. 

 

[14] Chow T.S., “Testing Software 

DesignModeled by Finite-State Machines,” 

IEEE Transactions on Software Engineering, 

Vol.SE-4, No.3, 1978, pp.178-187. 

 

[15]  Ipate F. and Holcombe M., “Specification 

and testing using generalised machines: a 

presentation and a case study”, Software 

Testing, Verification and Reliability, Vol.8, 

1998, pp. 61-81. 

 

[16]  M. Pidd, Using Java to Develop Discrete 

Event Simulation”, J. Opl. Res. Soc. 

 

[17]  Tocher K., The Art of Simulation, Van 

Nostrand Company, Princeton NJ, 1963. 

 

[18]  F. Ipate, 2004, Complete Deterministic 

Stream X–Machine Testing, Formal Aspects 

of Computing, 16, p. 374 – 386.  

 

 

 


