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Abstract: - Simulation program development is supported by simulation languages and simulation-specific 
libraries developed in general-purpose programming languages. Although these software tools are widely 
discussed in the simulation literature, simulation programming testing, an important phase of a simulation study 
which aims to uncover errors in the simulation program, is to a large extend under-studied. This paper discusses 
two complementary testing techniques that have been found helpful in testing simulation programs developed 
using discrete-event simulation-specific libraries. The testing techniques are presented and adopted for use in 
simulation, modifications need to be introduced to the simulation library in order to apply the techniques are 
discussed and software tools that automate the testing process are presented. The power of the techniques to 
identify errors imputed in a simulation program is demonstrated. 
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1   Introduction 
Simulation is often used for the study of real-life 
complex systems. In a typical simulation study, 
initially, a conceptual model of the system is 
constructed and based on this conceptual model, 
the simulation program is developed. Data driven 
simulators (such as described in [1], [2], [3], [4]) 
facilitate the development of the conceptual model 
by representing the simulated system as data and 
automate the development of the corresponding 
simulation program. Thus, in the cases that a 
simulator may capture the characteristics of the 
system under study with the necessary level of 
accuracy, simulation program testing is not 
necessary since it is legitimately assumed that the 
program generation capability of the simulator has 
been exhaustively tested by the simulator developer 
and may be trusted by the user. However, 
simulation experts quite often have to manually 
develop simulation programs since existing 
simulators do not always provide the required 
functionality. In these cases, the simulation 
program is developed in a simulation language or 
in a general-purpose language using simulation-
specific libraries (e.g. [5], [6], [7]). The testing of 
the simulation programs thus developed is a 
necessary step in order to establish that the 
conceptual model has been properly transformed to 
program.  
 

The simulation languages and the simulation-
specific libraries that have been developed are well 
documented and widely publicized in academic 
journals and international conferences. The testing 
of the simulation programs developed using these 
languages and simulation libraries has not received 
the corresponding attention. To begin with, the 
dominant trend in simulation literature is to discuss 
testing together with validation and verification. 
Thus, nearly all methodological simulation papers 
recommend validation verification and testing (VV 
& T) as necessary activities that need to take place 
throughout the simulation development life cycle, 
they provide a more or less widely acceptable 
categorization of VV & T techniques (usually 
without distinguish between validation techniques, 
verification techniques and testing techniques) and 
conclude by briefly describing existing VV & T 
techniques.  In short, it could be stated that the 
majority of the simulation papers that deal with 
testing remain at a general description of existing 
testing techniques without describing in depth how 
to employ these techniques for the testing 
simulation programs. As a result, simulation-
specific testing issues such as: the implementation 
of existing testing approaches to simulation or the 
modification of the simulation libraries in order to 
support the testing of the simulation program are 
not discussed in the simulation literature.  
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This paper discusses two complementary testing 
techniques that have been found helpful in testing 
simulation programs developed using discrete-
event simulation-specific libraries. The testing 
techniques are described and adopted for use in 
simulation, modifications need to be introduced to 
the simulation library in order to apply the 
techniques are discussed and software tools that 
automate the testing process are presented. Finally, 
the power of the techniques to identify errors 
imputed in a simulation program is demonstrated.  
 
According to Myers [8] testing is the process of 
executing a program with the intent of finding 
errors. Effective testing requires careful selection of 
specific sets of data so that the functionality of the 
program is satisfactorily tested. The data used for 
testing purposes are called test-cases and for each 
test-case, the expected output must also be 
determined. Additional code may be necessary to 
be added to the program under test in order to 
collect information about program behaviour 
during execution. The testing of the program is then 
conducted by comparing the output produced by 
the program under test to the expected output: any 
difference between the simulation-generated output 
and the expected output identifies an error in the 
simulation program.  
 
Black-box testing techniques [8] base the 
generation of test-cased on the specification of the 
program under test while white-box testing 
techniques examine the internal structure of the 
program under test in order to generate the test-
cases. In this paper we study the employment of 
two black-box techniques for testing the program 
that simulates the system described in the section 2.  
 
 
2   The simulated system  
Consider a simple manufacturing facility which 
manufactures product parts. Each product part is 
uniquely identified by an identification number. 
The manufacturing facility consists of buffers 
which are storage spaces of limited capacity and 
simple machines which carry out the manufacturing 
processing. Parts may be added in a buffer only if 
there is available space in it, while the parts 
removed from a buffer depend on the buffer 
discipline.  
 
The parts that are required to be processed by a 
machine are placed in a buffer which is called input 
buffer, while the parts that have been processed by 

the machine are stored in another buffer called 
output buffer.  
 
When the machine is idle and there are parts stored 
in the input buffer, the machine may start the 
processing of a part: The first part p placed in the 
input buffer is removed from the input buffer and 
the machine starts processing it. Thus, the FIFO 
discipline for input buffer is used. The processing 
of the part lasts for t time units. If at the completion 
of the part processing, the output buffer is not full, 
then part p is placed in the output buffer and the 
machines either becomes idle or starts processing 
another part depending on whether the input buffer 
is empty or not. If, however, the output buffer is 
full when the machine completes the processing of 
a part, the part p may not be removed from the 
machine and thus then machine is blocked. The 
machine is unblocked when space becomes 
available in the output buffer. It is assumed that the 
machine does not require setup and does not fail.  
 
 
3   Simulation system specification  
This section describes the specification of the 
simulation system described previously. The 
specification of the system is based on the X-
Machine formalism [9] and constitutes the basis 
upon which the black-box testing techniques are 
developed.  
 
3.1   Buffer specification 
The buffer memory is: BM =  (PARTS × Capacity) 
where PARTS represents the set of all the parts 
contained in the buffer in a given moment and 
Capacity is the maximum number of parts that may 
be stored in the buffer.  
 
Two functions are necessary to describe the 
behaviour of the buffer: add_part is a function 
responsible for adding a new part into the buffer 
and remove_part is a function which removes a part 
stored in the buffer. We will use the following 
notation for the specification of a function: 
 
f (in, mem) = (out, new_mem) guard 
 
This notation is read as: function f accepts as input 
in and operates on memory mem; if guard is 
satisfied then function f changes the memory into 
new_mem and produces the output out.  
 
The specification of add_part and remove_part is 
given next using the above notation:  
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add_part (p, (Parts, Capacity)) =  
(part_added, (Parts ∪ p, Capacity) 
if p ∉ Parts ∧ card (Parts) ≤ Capacity – 1   
 
remove_part (p, (Parts, Capacity)) =  
(part_removed, ((part – p), Capacity))  
if p ∈ Parts ∧ card (Parts) ≥ 1 
 
Where: 
• p is the part that is going to be added in the 

buffer by add_part 
• (Parts, Capacity) is the memory of the buffer as 

stated earlier 
• part_added is the output produced by the 

function add_part when it is executed 
• card (Parts) is the cardinality of the set Parts.  

 
To complete the specification of the buffer, we 
develop its X-Machine description. All the 
elements of this X-Machine have been described 
earlier, so it only remains to develop the associated 
finite state automaton of the X-Machine which is 
shown in Figure 1. 

Empty

Non Empty

Full

add_part

add_part remove_part

remove_part
become_empty

become_full

 
Figure 1: The associated finite state automaton for 
the Buffer. Initial state: Empty. 
 
The functions add_part and remove_part that have 
been defined earlier, here have been renamed. Thus, 
the function becomeFull is the function add_part, 
while the function become_empty is the function 
remove_part.  
 
3.2. Machine specification 
The machine memory is: 
MM = (Time× IN × PROC × OUT × BTime × 
DUR) where  
• Time is the current simulation time 
• IN is the set of parts contained in the machine’s 

input buffer 
• PROC is the set of parts currently being 

processed by the machine 
• OUT is the set of parts currently stored in the 

machine’s output buffer 

• BTime is the simulation time the machine is 
expected to complete its current operation 

• DUR is the duration of the operation  
 
The behavior of the machine is described by five 
functions: start and end_process (which model the 
commencement and the completion of a machine 
operation respectively), reset (which models the 
fact that a machine just finished an operation may 
proceed with another operation) and block and 
unblock. The definitions of the function start 
follows, using the notation explained earlier. The 
other functions are defined similarly.  
 
start (check_start, (now, in, nil, out, nil, dur) ) =  
(proc_starts, (now, (in-p), p, out, now+dur, dur),)  
if (in ≠ empty ∧ Proc = nil ∧ BTime =  nill) 
 
The associated finite state automaton of the X-
Machine that corresponds to the machine is shown 
in Figure 2.  
 

Idle

end_processingunblock

Working

FinishedBlocked

start

reset

connect
 

Figure 2: The associated finite state automaton for 
the Machine. Initial state: Idle.  
 
Having completed the specification of the Buffer 
and the Machine it is now possible to generate the 
test-cases that will be used for testing their 
implementation. 
 
 
4   Test-case generation 
In this section we present how two black-box 
testing techniques may be used for the testing of 
simulation entities. The first black-box technique 
(equivalence partitioning) is used to test the 
individual functions of a simulation program, while 
the second technique (X-Machine testing) is used to 
test the integration of functions.  
 
 
4.1   Test-case generation based on 
equivalence partitioning 
In equivalence partitioning equivalence classes of 
test data are generated: valid equivalence classes 
representing valid values to variables while invalid 
equivalence classes representing erroneous variable 
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values. The equivalence classes are identified based 
on the specification of the functions.  
 
Lets consider the guard of the function add_part of 
the Buffer. Two conditions may be identified which 
satisfy the guard: according to the first condition a 
part p that is not hold in buffer (p ∉ parts) is added 
in a buffer having more than one empty spaces 
(card (parts) < capacity – 1). A test-case that 
represents this condition is to add part p2 to a 
buffer with capacity 5 that holds part p1. This test-
case is described as: MB = (<p1>, 5), p = p1. 
According to the second condition a part p that is 
not hold in buffer (p ∉ parts) is added in a buffer 
having exactly one empty spaces (card (parts) < 
capacity – 1). A test-case that represents this testing 
condition is to add part p2 to a buffer with capacity 
2 the holds part p1, i.e. the test-case: MB = (<p1>, 
2), p = p2. These two input conditions constitute 
the valid equivalence classes for the Buffer 
function add_part. Invalid equivalence classes need 
also be derived. The valid and invalid equivalence 
classes for the functions of the Buffer, together 
with their corresponding test-cases are shown in the 
Table 1.  
  

BUFFER 
Function: add_part 
a) valid equivalence classes  
p ∉ parts ∧  
card (parts) < capacity – 1  

1. MB = (<p1>, 5),  
    p = p2 

p ∉ parts ∧  
card (parts)  =  capacity – 1  

2. MB = (<p1>, 2) 
    p = p2 

b) invalid equivalence classes 
p ∈ parts ∧  
card (parts)  < capacity – 1    

3. MB = (<p1>, 5),  
    p = p1 

p ∉ parts ∧ 
 card (parts)  >  capacity –1 

4. MB = (<p1, p2>, 2),  
    p  = p3 

Function:  remove_part 
a) valid equivalence classes 
p ∈ parts ∧  
card (parts) > 1  

5. MB = (<p1,p2>, 5),  
      p = p2 

p ∈ parts ∧  
card (parts) = 1  

6. MB = (<p1>, 5),  
      p = p1 

b) invalid equivalence classes 
p ∉ parts ∧  
card (parts) > 1  

7. MB = (<p1, p2>, 5),       
      p = p3    

Table 1: Test-cases for the Buffer functions 
generated by the equivalence partitioning approach.  
 
The functions that represent the Machine 
functionality have also been treated in a similar 
manner, in order to derive the appropriate test-cases. 
In total ten test-cases (three of them being valid and 

seven invalid equivalence classes) have been 
derived for the Machine.  
 
 
4.2   Test-case generation based on X-
Machine testing 
The X-Machine test-case (XMTC) generation is an 
extension of Chow’s W-method [10] and is 
presented in detail in [9]. XMTC generation 
requires the identification of two sets: the 
characterisation set and the state cover set. 
Informally, a characterisation set W is a set of input 
sequences for which any two distinct states of the 
machine are distinguishable. The state cover S is a 
set of input sequences such that all states are 
reachable by the initial state.  
 
The implementation of the XMTC generation 
algorithm (for k = 1) generates 96 test-cases for the 
buffer and 108 for the machine. Due to space 
limitations, two short extracts of these test-case are 
shown next:  
 
Test-case for the Buffer 
B1. e:become_empty 
B2. e:ignore_add 
B3. e:add_part:become_empty 
B4. add_part:become_full:ignore_add:become_empty 
B5. add_part:become_full:ignore_add:ignore_add 
B6. add_part:add_part:become_empty 
B7. add_part:become_full:remove_part:add_part: 
       become_empty 
B8. add_part:become_full:remove_part:add_part:ignore_ 
      add 
B9. add_part::become_full::ignore_add::become_empty 
 
Test-case for the Machine 
M1. start:end_process::reset::start  
M2. start:end_process:block:unblock::start  
M3. start:end_process:reset::end_process 
M4. start:end_process::start 
 
 
5. Test-case implementation and 
evaluation 
The buffer and the machine described in the 
example above, were developed in Java using the 
three-phase discrete-event simulation library JSim 
developed by M. Pidd [11]. JSim implements the 
three-phase approach [12] according to which the 
simulation proceeds through three phases: A-phase 
determines the next simulation time and forwards 
simulation clock to that time, B-phase executes  the 
activities scheduled to be executed at the current 
simulation time and C-phase attempts to execute all 
the conditional activities.  
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In order to test the effectiveness of the test-cases 
generated in section 4, a number of errors were 
imputed in the code that implemented the Buffer 
and the Machine. Then, the test-cases generated in 
Section 4 were implemented in JUnit. The 
implementation of the equivalence-partitioning 
test-cases was straight-forward. For example, test 
case #4 for the buffer was implemented as follows 
(Figure 3): Initially a buffer (b) with capacity 2 and 
three parts (p1, p2, p3) are constructed. Then all the 
part are attempted to be added to the buffer and it is 
checked that the buffer contains exactly two part 
(i.e. parts p1 and p2).  
public void testAddPartToNonEmptyBuffer2 () { 
 b = new Buffer (2);  
 p1 = new Part ("Part", 1); 
 p2 = new Part ("Part", 2); 
 p3 = new Part ("Part", 2); 
 b.addPart (p1);  
 b.addPart (p2); 
 b.addPart (p3); 
 assertTrue (b.size( ) == 2); 
 assertTrue (b.contains(p1)); 
 assertTrue (b.contains(p2)); 
 assertTrue (!b.contains(p3)); 
  } 
Figure 3: Implementation of the equivalence 
partitioning test case #4 for the Buffer in JUnit.  
 
The implementation of the test-cases generated by 
X-Machine required a number of extensions to be 
introduced in the simulation library. More 
explicitly,  a) a mechanism that allows the user to 
determine the first simulation phase and b) a 
facility to re-initiate the simulation system, so that 
simulation runs for the successive test-case could 
be executed in JUnit were developed. Furthermore, 
some X-Machine test-cases require the 
development of a function (stub) in order to 
achieve a desired result. For example, the test-case 
M2 requires the development of a function that will 
achieve the unblocking of the machine. The tester 
has both to develop this stub and to call it at the 
appropriate simulation time.  
 
Table 2 shows the errors imputed and the test-case 
that identified them: thus, errors identified by the 
equivalence partitioning and by the X-Machine 
test-cases are shown in the 4th and 5th column of the 
table respectively.  

N
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d 
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e 
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Description of imputed 
error 

Id
en

tif
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d 
by

 E
PT

 

Id
en

tif
ie

d 
by

 X
M

T 

ERRORS IMPUTED IN BUFFER 
1 Remove 

Part 
Removing a part 
decreases buffer’s 
capacity by one 

--  
 

2 AddPart Adding a part increases 
buffer’s capacity by one  

 
 

 
 

3 AddPart  A part already stored in 
the buffer is allowed to 
be added in it again  

 
 -- 

4 AddPart No part is added to the 
buffer 

 
  

ERRORS IMPUTED IN MACHINE 
1 start start could be called even 

if machine was not idle 
 
 -- 

2 start The part to be processed 
was not removed from 
the machine’s input 
buffer 

 
 

 
 

3 start The end of processing 
was not scheduled --  

 
4 start The machine’s state was 

not changed to processing 
 

  

5
  

end Machine status is not 
changed to idle at 
successful completion of 
the processing 

 
  

6 end Machine status is not 
changed to blocked when 
blockage occurs 

 
 

 
 

7 Unblock Part is not placed in the 
proper next buffer 

 
 

 
 

Table 2: The errors imputed in the Buffer and 
Machine code and the test-cases that identified 
them.  
 
6    Discussion  
All the errors introduced in the code were identified 
by the test-cases generated the test-cases generated 
in Section 4. However, none of the two black-box 
testing approaches had the power to identify all the 
errors imputed in the code. Equivalence 
partitioning test-cases are capable of identifying 
errors whose effects may become obvious at the 
execution of a function. Buffer error #3 is an 
example of this type of error: when the addition of 
a new part is attempted, it is checked whether this 
part is already stored in the buffer.  Errors related to 
the erroneous modification of memory values, on 
the other hand, are difficult to be identified at the 
time they are committed. Their presence may be 
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identified by the erroneous output produced during 
the execution of another function which operates on 
the incorrectly set memory value. Buffer error #1 is 
an example of this type of error. Integration testing 
which tests the proper co-operation of the functions 
developed is more suitable to uncover this type of 
error. It is interesting to note that buffer error #2 is 
identified by both testing techniques (test case #4 
of the equivalence partitioning approach and test 
case B5 of the X-Machine test-cases) . This is due 
to the fact that the implementation of the 
equivalence partitioning test-cases (#4) in JUnit 
closely resemble an integration test-case: the 
function add_part is called repetitively in order to 
set up the buffer’s memory as required by the test-
case.  
 
7   Concluding remarks 
Black-box testing techniques provide powerful test-
cases based on system specifications, but 
unfortunately, no single black-box testing 
technique is powerful enough to uncover all coding 
errors. Attempts to combine alternative black-box 
testing techniques into one as suggested in [13] are 
interesting and worth-exploring especially if the 
appropriate test-specific software is developed.  
 
The usage of test-specific software facilitates the 
adoption of the testing techniques and reduces time 
and effort: test-case generation, test-case 
development and testing itself may become quite 
time-consuming activities if not supported by the 
appropriate software.  
 
The X-Machine approach is suitable for designing 
and testing stand-alone simulation entities. This 
approach is practical since it allows the design, 
implementation and testing of simulation entities 
with well-designed functionality.  
 
Acknowledgment 
The Project is co-funded by the European Social 
Fund and National Resources - (EPEAEK-II) 
ARHIMIDES.  
 
References 
[1]  Rohrer, M. 1999. “Automod product suite 

tutorial”, Proc. of the 1999 Winter 
Simulation Conference, Ed. P.A. Farrington, 
H.B. Nembhard, D.T. Sturrock, G.W. Evans., 
pp. 220-226. 

[2]  Price, R. N. and Harrell, C.R.. 1999. 
“Simulation modelling and optimisation 
using Promodel”, Proc. of the 1999 Winter 

Simulation Conference, Ed. P.A. Farrington, 
H.B. Nembhard, D.T. Sturrock, G.W. Evans. 
pp. 208-214 

[3]  Sadowski, D. and Bapat, V. 1999. “The 
Arena product family: enterprise modelling 
solutions”, Proc. of the 1999 Winter 
Simulation Conference, Ed. P.A. Farrington, 
H.B. Nembhard, D.T. Sturrock, G.W. Evans. 
pp. 159-166. 

[4]  O’Reilly. JJ and  Lilegdon, W.R. 1999. 
“Introduction to FACTOR/AIM”, Proc. of 
the 1999 Winter Simulation Conference, Ed. 
P.A. Farrington, H.B. Nembhard, D.T. 
Sturrock, G.W. Evans. pp. 201-207. 

[5]  Miller, J.A., Y. Ge and J. Tao. 1998. 
Component-Based Simulation Environments: 
JSIM as a Case Study Using Java Beans, In: 
Proceedings of the 1998 Winter Simulation 
Conference, ed. D. Medeiros, E. Watson, J. 
Carson, and M. Manivannan, 373-381, 
Washington, DC, 13-16 December. 

[6]  R.A. Kilgore, Object-oriented simulation 
with SML and SILK in .NET and Java, In: 
Proceedings of the 2003 Winter Simulation 
Conference, ed. S. Chick, P.J. Sanchez, D. 
Ferrin and D. J. Morrice, p. 218 – 224.  

[7]  Howell, F. and R. McNab. 1998. Simjava: A 
Discrete Event Simulation Package for Java 
with Applications in Computer Systems 
Modelling, In: Proceedings of the First 
International Conference on Web-Based 
Modeling and Simulation, San Diego, CA, 
January. 

[8]  G. J. Myers, The art of software testing, 
Wiley, 1979. 

[9]  Ipate F. and Holcombe M., “Specification 
and testing using generalised machines: a 
presentation and a case study”, Software 
Testing, Verification and Reliability, Vol.8, 
1998, pp. 61-81. 

[10] Chow T.S., “Testing Software 
DesignModeled by Finite-State Machines,” 
IEEE Transactions on Software Engineering, 
Vol.SE-4, No.3, 1978, pp.178-187. 

[11]  M. Pidd, Using Java to Develop Discrete 
Event Simulation”, J. Opl. Res. Soc. 

[12]  Tocher K., The Art of Simulation, Van 
Nostrand Company, Princeton NJ, 1963. 

[13]  F. Ipate, 2004, Complete Deterministic 
Stream X–Machine Testing, Formal Aspects 
of Computing, 16, p. 374 – 386.  

 
 
 
 

Proceedings of the 10th WSEAS International Conference on SYSTEMS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp50-55)


