
Testing Discrete-Event Simulation Programs Using Black-Box
Techniques

EVANGELOS KEHRIS

Department of Business Administration
Technological Educational Institute (T.E.I.) of Serres

Terma Magnisias, 621 24 Serres
GREECE

kehris@teiser.gr

Abstract: - Simulation program development is supported by simulation languages and simulation-specific
libraries developed in general-purpose programming languages. Although these software tools are widely
discussed in the simulation literature, simulation programming testing, an important phase of a simulation study
which aims to uncover errors in the simulation program, is to a large extend under-studied. This paper discusses
two complementary testing techniques that have been found helpful in testing simulation programs developed
using discrete-event simulation-specific libraries. The testing techniques are presented and adopted for use in
simulation, modifications need to be introduced to the simulation library in order to apply the techniques are
discussed and software tools that automate the testing process are presented. The power of the techniques to
identify errors imputed in a simulation program is demonstrated.

Key-Words: - Simulation, Testing, Equivalence Partitioning, X-Machines

1 Introduction
Simulation is often used for the study of real-life
complex systems. In a typical simulation study,
initially, a conceptual model of the system is
constructed and based on this conceptual model,
the simulation program is developed. Data driven
simulators (such as described in [1], [2], [3], [4])
facilitate the development of the conceptual model
by representing the simulated system as data and
automate the development of the corresponding
simulation program. Thus, in the cases that a
simulator may capture the characteristics of the
system under study with the necessary level of
accuracy, simulation program testing is not
necessary since it is legitimately assumed that the
program generation capability of the simulator has
been exhaustively tested by the simulator developer
and may be trusted by the user. However,
simulation experts quite often have to manually
develop simulation programs since existing
simulators do not always provide the required
functionality. In these cases, the simulation
program is developed in a simulation language or
in a general-purpose language using simulation-
specific libraries (e.g. [5], [6], [7]). The testing of
the simulation programs thus developed is a
necessary step in order to establish that the
conceptual model has been properly transformed to
program.

The simulation languages and the simulation-
specific libraries that have been developed are well
documented and widely publicized in academic
journals and international conferences. The testing
of the simulation programs developed using these
languages and simulation libraries has not received
the corresponding attention. To begin with, the
dominant trend in simulation literature is to discuss
testing together with validation and verification.
Thus, nearly all methodological simulation papers
recommend validation verification and testing (VV
& T) as necessary activities that need to take place
throughout the simulation development life cycle,
they provide a more or less widely acceptable
categorization of VV & T techniques (usually
without distinguish between validation techniques,
verification techniques and testing techniques) and
conclude by briefly describing existing VV & T
techniques. In short, it could be stated that the
majority of the simulation papers that deal with
testing remain at a general description of existing
testing techniques without describing in depth how
to employ these techniques for the testing
simulation programs. As a result, simulation-
specific testing issues such as: the implementation
of existing testing approaches to simulation or the
modification of the simulation libraries in order to
support the testing of the simulation program are
not discussed in the simulation literature.

Proceedings of the 10th WSEAS International Conference on SYSTEMS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp50-55)

This paper discusses two complementary testing
techniques that have been found helpful in testing
simulation programs developed using discrete-
event simulation-specific libraries. The testing
techniques are described and adopted for use in
simulation, modifications need to be introduced to
the simulation library in order to apply the
techniques are discussed and software tools that
automate the testing process are presented. Finally,
the power of the techniques to identify errors
imputed in a simulation program is demonstrated.

According to Myers [8] testing is the process of
executing a program with the intent of finding
errors. Effective testing requires careful selection of
specific sets of data so that the functionality of the
program is satisfactorily tested. The data used for
testing purposes are called test-cases and for each
test-case, the expected output must also be
determined. Additional code may be necessary to
be added to the program under test in order to
collect information about program behaviour
during execution. The testing of the program is then
conducted by comparing the output produced by
the program under test to the expected output: any
difference between the simulation-generated output
and the expected output identifies an error in the
simulation program.

Black-box testing techniques [8] base the
generation of test-cased on the specification of the
program under test while white-box testing
techniques examine the internal structure of the
program under test in order to generate the test-
cases. In this paper we study the employment of
two black-box techniques for testing the program
that simulates the system described in the section 2.

2 The simulated system
Consider a simple manufacturing facility which
manufactures product parts. Each product part is
uniquely identified by an identification number.
The manufacturing facility consists of buffers
which are storage spaces of limited capacity and
simple machines which carry out the manufacturing
processing. Parts may be added in a buffer only if
there is available space in it, while the parts
removed from a buffer depend on the buffer
discipline.

The parts that are required to be processed by a
machine are placed in a buffer which is called input
buffer, while the parts that have been processed by

the machine are stored in another buffer called
output buffer.

When the machine is idle and there are parts stored
in the input buffer, the machine may start the
processing of a part: The first part p placed in the
input buffer is removed from the input buffer and
the machine starts processing it. Thus, the FIFO
discipline for input buffer is used. The processing
of the part lasts for t time units. If at the completion
of the part processing, the output buffer is not full,
then part p is placed in the output buffer and the
machines either becomes idle or starts processing
another part depending on whether the input buffer
is empty or not. If, however, the output buffer is
full when the machine completes the processing of
a part, the part p may not be removed from the
machine and thus then machine is blocked. The
machine is unblocked when space becomes
available in the output buffer. It is assumed that the
machine does not require setup and does not fail.

3 Simulation system specification
This section describes the specification of the
simulation system described previously. The
specification of the system is based on the X-
Machine formalism [9] and constitutes the basis
upon which the black-box testing techniques are
developed.

3.1 Buffer specification
The buffer memory is: BM = (PARTS × Capacity)
where PARTS represents the set of all the parts
contained in the buffer in a given moment and
Capacity is the maximum number of parts that may
be stored in the buffer.

Two functions are necessary to describe the
behaviour of the buffer: add_part is a function
responsible for adding a new part into the buffer
and remove_part is a function which removes a part
stored in the buffer. We will use the following
notation for the specification of a function:

f (in, mem) = (out, new_mem) guard

This notation is read as: function f accepts as input
in and operates on memory mem; if guard is
satisfied then function f changes the memory into
new_mem and produces the output out.

The specification of add_part and remove_part is
given next using the above notation:

Proceedings of the 10th WSEAS International Conference on SYSTEMS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp50-55)

add_part (p, (Parts, Capacity)) =
(part_added, (Parts ∪ p, Capacity)
if p ∉ Parts ∧ card (Parts) ≤ Capacity – 1

remove_part (p, (Parts, Capacity)) =
(part_removed, ((part – p), Capacity))
if p ∈ Parts ∧ card (Parts) ≥ 1

Where:
• p is the part that is going to be added in the

buffer by add_part
• (Parts, Capacity) is the memory of the buffer as

stated earlier
• part_added is the output produced by the

function add_part when it is executed
• card (Parts) is the cardinality of the set Parts.

To complete the specification of the buffer, we
develop its X-Machine description. All the
elements of this X-Machine have been described
earlier, so it only remains to develop the associated
finite state automaton of the X-Machine which is
shown in Figure 1.

Empty

Non Empty

Full

add_part

add_part remove_part

remove_part
become_empty

become_full

Figure 1: The associated finite state automaton for
the Buffer. Initial state: Empty.

The functions add_part and remove_part that have
been defined earlier, here have been renamed. Thus,
the function becomeFull is the function add_part,
while the function become_empty is the function
remove_part.

3.2. Machine specification
The machine memory is:
MM = (Time× IN × PROC × OUT × BTime ×
DUR) where
• Time is the current simulation time
• IN is the set of parts contained in the machine’s

input buffer
• PROC is the set of parts currently being

processed by the machine
• OUT is the set of parts currently stored in the

machine’s output buffer

• BTime is the simulation time the machine is
expected to complete its current operation

• DUR is the duration of the operation

The behavior of the machine is described by five
functions: start and end_process (which model the
commencement and the completion of a machine
operation respectively), reset (which models the
fact that a machine just finished an operation may
proceed with another operation) and block and
unblock. The definitions of the function start
follows, using the notation explained earlier. The
other functions are defined similarly.

start (check_start, (now, in, nil, out, nil, dur)) =
(proc_starts, (now, (in-p), p, out, now+dur, dur),)
if (in ≠ empty ∧ Proc = nil ∧ BTime = nill)

The associated finite state automaton of the X-
Machine that corresponds to the machine is shown
in Figure 2.

Idle

end_processingunblock

Working

FinishedBlocked

start

reset

connect

Figure 2: The associated finite state automaton for
the Machine. Initial state: Idle.

Having completed the specification of the Buffer
and the Machine it is now possible to generate the
test-cases that will be used for testing their
implementation.

4 Test-case generation
In this section we present how two black-box
testing techniques may be used for the testing of
simulation entities. The first black-box technique
(equivalence partitioning) is used to test the
individual functions of a simulation program, while
the second technique (X-Machine testing) is used to
test the integration of functions.

4.1 Test-case generation based on
equivalence partitioning
In equivalence partitioning equivalence classes of
test data are generated: valid equivalence classes
representing valid values to variables while invalid
equivalence classes representing erroneous variable

Proceedings of the 10th WSEAS International Conference on SYSTEMS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp50-55)

values. The equivalence classes are identified based
on the specification of the functions.

Lets consider the guard of the function add_part of
the Buffer. Two conditions may be identified which
satisfy the guard: according to the first condition a
part p that is not hold in buffer (p ∉ parts) is added
in a buffer having more than one empty spaces
(card (parts) < capacity – 1). A test-case that
represents this condition is to add part p2 to a
buffer with capacity 5 that holds part p1. This test-
case is described as: MB = (<p1>, 5), p = p1.
According to the second condition a part p that is
not hold in buffer (p ∉ parts) is added in a buffer
having exactly one empty spaces (card (parts) <
capacity – 1). A test-case that represents this testing
condition is to add part p2 to a buffer with capacity
2 the holds part p1, i.e. the test-case: MB = (<p1>,
2), p = p2. These two input conditions constitute
the valid equivalence classes for the Buffer
function add_part. Invalid equivalence classes need
also be derived. The valid and invalid equivalence
classes for the functions of the Buffer, together
with their corresponding test-cases are shown in the
Table 1.

BUFFER
Function: add_part
a) valid equivalence classes
p ∉ parts ∧
card (parts) < capacity – 1

1. MB = (<p1>, 5),
 p = p2

p ∉ parts ∧
card (parts) = capacity – 1

2. MB = (<p1>, 2)
 p = p2

b) invalid equivalence classes
p ∈ parts ∧
card (parts) < capacity – 1

3. MB = (<p1>, 5),
 p = p1

p ∉ parts ∧
 card (parts) > capacity –1

4. MB = (<p1, p2>, 2),
 p = p3

Function: remove_part
a) valid equivalence classes
p ∈ parts ∧
card (parts) > 1

5. MB = (<p1,p2>, 5),
 p = p2

p ∈ parts ∧
card (parts) = 1

6. MB = (<p1>, 5),
 p = p1

b) invalid equivalence classes
p ∉ parts ∧
card (parts) > 1

7. MB = (<p1, p2>, 5),
 p = p3

Table 1: Test-cases for the Buffer functions
generated by the equivalence partitioning approach.

The functions that represent the Machine
functionality have also been treated in a similar
manner, in order to derive the appropriate test-cases.
In total ten test-cases (three of them being valid and

seven invalid equivalence classes) have been
derived for the Machine.

4.2 Test-case generation based on X-
Machine testing
The X-Machine test-case (XMTC) generation is an
extension of Chow’s W-method [10] and is
presented in detail in [9]. XMTC generation
requires the identification of two sets: the
characterisation set and the state cover set.
Informally, a characterisation set W is a set of input
sequences for which any two distinct states of the
machine are distinguishable. The state cover S is a
set of input sequences such that all states are
reachable by the initial state.

The implementation of the XMTC generation
algorithm (for k = 1) generates 96 test-cases for the
buffer and 108 for the machine. Due to space
limitations, two short extracts of these test-case are
shown next:

Test-case for the Buffer
B1. e:become_empty
B2. e:ignore_add
B3. e:add_part:become_empty
B4. add_part:become_full:ignore_add:become_empty
B5. add_part:become_full:ignore_add:ignore_add
B6. add_part:add_part:become_empty
B7. add_part:become_full:remove_part:add_part:
 become_empty
B8. add_part:become_full:remove_part:add_part:ignore_
 add
B9. add_part::become_full::ignore_add::become_empty

Test-case for the Machine
M1. start:end_process::reset::start
M2. start:end_process:block:unblock::start
M3. start:end_process:reset::end_process
M4. start:end_process::start

5. Test-case implementation and
evaluation
The buffer and the machine described in the
example above, were developed in Java using the
three-phase discrete-event simulation library JSim
developed by M. Pidd [11]. JSim implements the
three-phase approach [12] according to which the
simulation proceeds through three phases: A-phase
determines the next simulation time and forwards
simulation clock to that time, B-phase executes the
activities scheduled to be executed at the current
simulation time and C-phase attempts to execute all
the conditional activities.

Proceedings of the 10th WSEAS International Conference on SYSTEMS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp50-55)

In order to test the effectiveness of the test-cases
generated in section 4, a number of errors were
imputed in the code that implemented the Buffer
and the Machine. Then, the test-cases generated in
Section 4 were implemented in JUnit. The
implementation of the equivalence-partitioning
test-cases was straight-forward. For example, test
case #4 for the buffer was implemented as follows
(Figure 3): Initially a buffer (b) with capacity 2 and
three parts (p1, p2, p3) are constructed. Then all the
part are attempted to be added to the buffer and it is
checked that the buffer contains exactly two part
(i.e. parts p1 and p2).
public void testAddPartToNonEmptyBuffer2 () {
 b = new Buffer (2);
 p1 = new Part ("Part", 1);
 p2 = new Part ("Part", 2);
 p3 = new Part ("Part", 2);
 b.addPart (p1);
 b.addPart (p2);
 b.addPart (p3);
 assertTrue (b.size() == 2);
 assertTrue (b.contains(p1));
 assertTrue (b.contains(p2));
 assertTrue (!b.contains(p3));
 }
Figure 3: Implementation of the equivalence
partitioning test case #4 for the Buffer in JUnit.

The implementation of the test-cases generated by
X-Machine required a number of extensions to be
introduced in the simulation library. More
explicitly, a) a mechanism that allows the user to
determine the first simulation phase and b) a
facility to re-initiate the simulation system, so that
simulation runs for the successive test-case could
be executed in JUnit were developed. Furthermore,
some X-Machine test-cases require the
development of a function (stub) in order to
achieve a desired result. For example, the test-case
M2 requires the development of a function that will
achieve the unblocking of the machine. The tester
has both to develop this stub and to call it at the
appropriate simulation time.

Table 2 shows the errors imputed and the test-case
that identified them: thus, errors identified by the
equivalence partitioning and by the X-Machine
test-cases are shown in the 4th and 5th column of the
table respectively.

N
o.

M
et

ho
d

co
nt

ai
ni

ng

th
e

er
ro

r

Description of imputed
error

Id
en

tif
ie

d
by

 E
PT

Id
en

tif
ie

d
by

 X
M

T

ERRORS IMPUTED IN BUFFER
1 Remove

Part
Removing a part
decreases buffer’s
capacity by one

--

2 AddPart Adding a part increases
buffer’s capacity by one

3 AddPart A part already stored in
the buffer is allowed to
be added in it again

 --

4 AddPart No part is added to the
buffer

ERRORS IMPUTED IN MACHINE
1 start start could be called even

if machine was not idle

 --

2 start The part to be processed
was not removed from
the machine’s input
buffer

3 start The end of processing
was not scheduled --

4 start The machine’s state was

not changed to processing

5

end Machine status is not
changed to idle at
successful completion of
the processing

6 end Machine status is not
changed to blocked when
blockage occurs

7 Unblock Part is not placed in the
proper next buffer

Table 2: The errors imputed in the Buffer and
Machine code and the test-cases that identified
them.

6 Discussion
All the errors introduced in the code were identified
by the test-cases generated the test-cases generated
in Section 4. However, none of the two black-box
testing approaches had the power to identify all the
errors imputed in the code. Equivalence
partitioning test-cases are capable of identifying
errors whose effects may become obvious at the
execution of a function. Buffer error #3 is an
example of this type of error: when the addition of
a new part is attempted, it is checked whether this
part is already stored in the buffer. Errors related to
the erroneous modification of memory values, on
the other hand, are difficult to be identified at the
time they are committed. Their presence may be

Proceedings of the 10th WSEAS International Conference on SYSTEMS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp50-55)

identified by the erroneous output produced during
the execution of another function which operates on
the incorrectly set memory value. Buffer error #1 is
an example of this type of error. Integration testing
which tests the proper co-operation of the functions
developed is more suitable to uncover this type of
error. It is interesting to note that buffer error #2 is
identified by both testing techniques (test case #4
of the equivalence partitioning approach and test
case B5 of the X-Machine test-cases) . This is due
to the fact that the implementation of the
equivalence partitioning test-cases (#4) in JUnit
closely resemble an integration test-case: the
function add_part is called repetitively in order to
set up the buffer’s memory as required by the test-
case.

7 Concluding remarks
Black-box testing techniques provide powerful test-
cases based on system specifications, but
unfortunately, no single black-box testing
technique is powerful enough to uncover all coding
errors. Attempts to combine alternative black-box
testing techniques into one as suggested in [13] are
interesting and worth-exploring especially if the
appropriate test-specific software is developed.

The usage of test-specific software facilitates the
adoption of the testing techniques and reduces time
and effort: test-case generation, test-case
development and testing itself may become quite
time-consuming activities if not supported by the
appropriate software.

The X-Machine approach is suitable for designing
and testing stand-alone simulation entities. This
approach is practical since it allows the design,
implementation and testing of simulation entities
with well-designed functionality.

Acknowledgment
The Project is co-funded by the European Social
Fund and National Resources - (EPEAEK-II)
ARHIMIDES.

References
[1] Rohrer, M. 1999. “Automod product suite

tutorial”, Proc. of the 1999 Winter
Simulation Conference, Ed. P.A. Farrington,
H.B. Nembhard, D.T. Sturrock, G.W. Evans.,
pp. 220-226.

[2] Price, R. N. and Harrell, C.R.. 1999.
“Simulation modelling and optimisation
using Promodel”, Proc. of the 1999 Winter

Simulation Conference, Ed. P.A. Farrington,
H.B. Nembhard, D.T. Sturrock, G.W. Evans.
pp. 208-214

[3] Sadowski, D. and Bapat, V. 1999. “The
Arena product family: enterprise modelling
solutions”, Proc. of the 1999 Winter
Simulation Conference, Ed. P.A. Farrington,
H.B. Nembhard, D.T. Sturrock, G.W. Evans.
pp. 159-166.

[4] O’Reilly. JJ and Lilegdon, W.R. 1999.
“Introduction to FACTOR/AIM”, Proc. of
the 1999 Winter Simulation Conference, Ed.
P.A. Farrington, H.B. Nembhard, D.T.
Sturrock, G.W. Evans. pp. 201-207.

[5] Miller, J.A., Y. Ge and J. Tao. 1998.
Component-Based Simulation Environments:
JSIM as a Case Study Using Java Beans, In:
Proceedings of the 1998 Winter Simulation
Conference, ed. D. Medeiros, E. Watson, J.
Carson, and M. Manivannan, 373-381,
Washington, DC, 13-16 December.

[6] R.A. Kilgore, Object-oriented simulation
with SML and SILK in .NET and Java, In:
Proceedings of the 2003 Winter Simulation
Conference, ed. S. Chick, P.J. Sanchez, D.
Ferrin and D. J. Morrice, p. 218 – 224.

[7] Howell, F. and R. McNab. 1998. Simjava: A
Discrete Event Simulation Package for Java
with Applications in Computer Systems
Modelling, In: Proceedings of the First
International Conference on Web-Based
Modeling and Simulation, San Diego, CA,
January.

[8] G. J. Myers, The art of software testing,
Wiley, 1979.

[9] Ipate F. and Holcombe M., “Specification
and testing using generalised machines: a
presentation and a case study”, Software
Testing, Verification and Reliability, Vol.8,
1998, pp. 61-81.

[10] Chow T.S., “Testing Software
DesignModeled by Finite-State Machines,”
IEEE Transactions on Software Engineering,
Vol.SE-4, No.3, 1978, pp.178-187.

[11] M. Pidd, Using Java to Develop Discrete
Event Simulation”, J. Opl. Res. Soc.

[12] Tocher K., The Art of Simulation, Van
Nostrand Company, Princeton NJ, 1963.

[13] F. Ipate, 2004, Complete Deterministic
Stream X–Machine Testing, Formal Aspects
of Computing, 16, p. 374 – 386.

Proceedings of the 10th WSEAS International Conference on SYSTEMS, Vouliagmeni, Athens, Greece, July 10-12, 2006 (pp50-55)

